Comparison of Nb, Nb₃Sn, MgB₂, cuprate, and pnictide for future SRF cavities

A. Miyazaki¹, C. Z. Antoine², S. Calatroni³ ¹CNRS/IN2P3/IJCLab Université Paris-Saclay ²CEA/DACM Université Paris-Saclay ³CERN high-β ellip

Cryogenic costs: infrastructure, helium, and electricity

• Niobium material is getting more and more expensive

Another point: HTS market is growing

Three different families of superconductors

Year

 \rightarrow How to estimate surface resistance at low B-field and lower RF frequency? ⁴

Optical conductivity in the Meissner state

$$\sigma_1 = \frac{2\sigma_n}{\hbar\omega} \int_0^\infty [f(\epsilon) - f(\epsilon + \hbar\omega)] [\operatorname{Re} G^R(\epsilon) \operatorname{Re} G^R(\epsilon + \omega) + \operatorname{Re} F^R(\epsilon) \operatorname{Re} F^R(\epsilon + \omega)] d\epsilon$$

S. N. Nam, Phys Rev 156 470 (1967)

 $\sim \frac{2\sigma_n}{\hbar\omega} (1 - e^{-\omega/T}) \int_0^\infty e^{-\epsilon/kT} N(\epsilon) N(\epsilon + \hbar\omega) d\epsilon$ J. Halbritter Z. Physik 266 p.209 (1974)

$$E + \hbar\omega \int_{E} - \frac{1}{2} \int_{E} \frac{1}{2} \int_{E}$$

$$E + \hbar\omega \int_{E} - \int_{E} \hbar\omega$$

Conventional s-wave (Nb, Nb₃Sn)

Cuprate d-wave

Pnictide s_{\pm} -wave

$$\frac{N(\epsilon)}{N_0} = \operatorname{Re}\left(\frac{\epsilon + i\delta}{\sqrt{(\epsilon + i\delta)^2 - \Delta_0^2}}\right)$$

$$\frac{N(\epsilon)}{N_0} = \operatorname{Re}\left(\left|\frac{\epsilon + i\delta}{\sqrt{(\epsilon + i\delta)^2 - \Delta^2(\theta)}}\right|\right)$$

Clean MgB₂

$$\frac{N(\epsilon)}{N_0} = \sum_{\alpha = \sigma, \pi} N_{\alpha} \operatorname{Re}\left(\frac{\epsilon + i\delta}{\sqrt{(\epsilon + i\delta)^2 - \Delta_{\alpha}^2}}\right)$$

K. Watanabe and T. Kita, JPSJ 73 2239 (2004)

 $\Delta(\theta) = \Delta_0 \cos 2\theta$ P. Coleman "Introduction to Many-Body Physics"

 $\frac{N(\epsilon)}{N_0} = \operatorname{Re}\left(\left|\frac{\epsilon + i\delta}{\sqrt{(\epsilon + i\delta)^2 - \Delta_{\alpha_{1,2},\beta_{1,2}}^2(\phi_{1,2})}}\right|\right)$

 $\Delta_{\alpha_{1,2},\beta_{1,2}}(\phi_{1,2}) = \Delta_0 \Phi_{\alpha_{1,2},\beta_{1,2}}$ $\Phi_{\alpha_{1,2}} = -\Phi_a$

$$\Phi_{\beta_{1,2}} = \frac{1 + \Phi_{\beta_{min}}}{2} \pm \frac{\left(1 - \Phi_{\beta_{min}}\right)}{2} \cos(2\phi_{1,2})$$

X Nagai et al New I Phys. 10 103026 (2008)

Fermi surface and gap structure

A. Carrington, Physique 12 (2011) 502–514

Summary of density of states

$$\frac{\sigma_1}{\sigma_n} \sim \frac{2\sigma_n}{\hbar\omega} (1 - e^{-\omega/T}) \int_0^\infty e^{-\epsilon/kT} N(\epsilon) N(\epsilon + \hbar\omega) d\epsilon$$

And perform numerical integral

	Nb	Nb₃Sn	MgB ₂	pnictide	
А	81.8±2.1	204.8 ± 2.9	34.0±0.6	106.3±2.3	
Δ	20.8 ± 0.11	41.8 ± 0.11	26.8 ± 0.1	67.0±0.11	
В	0.0053 ± 0.0002	0.0015 ± 0.0001	0.0018 ± 0.0001	0.0006 ± 0.00006	

	cuprate
С	0.0001 ± 0.00005
α	2.341 ± 0.013
В	0.0038 ± 0.00036

Surface resistance
$$Z_s = \sqrt{\frac{i\omega\mu_0}{\sigma_1 - i\sigma_2}} \xrightarrow{T \ll T_c, \sigma_1 \ll \sigma_2} \sqrt{\frac{\mu_0}{\omega\sigma_2^3}} \left(\frac{1}{2}\sigma_1 + i\sigma_2\right) \rightarrow R_s = \operatorname{Re}(Z_s) = \frac{\mu_0\omega^2\lambda^3}{2}\sigma_1(T)$$

The penetration depth is factor 10 longer in HTS than Nb \rightarrow RF field looks more materials

HTS: between SC and NC \rightarrow pulse operation (?)

Nb $Q_0 \approx 10^{10}$, ms-CW

HTS Q₀≈10⁵⁻⁸, 10-100 μs

Cu Q₀≈10⁴, 1 μs

Lack of experimental data at high RF field

Microstrip resonator (200 μ m, t350 nm, 8 GHz)~10¹¹ A/m² \hat{g}

→ t1 µm 10⁵ A/m ~ 0.1T ~ 25 MV/m (?)

→ High gradient test at SLAC (I.FAST IIF) with the mushroom cavity

Summary

- Current SRF technology is at the risk of sustainability for the future
- Materials beyond Nb or even beyond Nb₃Sn could be useful to
 - Operate cavities at higher temperature
 - Ultimately high performance at low temperature
- A phenomenological model calculation was developed to compare s-wave, d-wave, and s $_\pm$ -wave superconductors' RF performance in the Meissner state
 - High resistance due to long penetration depth \rightarrow multilayer
 - Pulse operation
- More measurements are necessary!

Discussions

- More realistic modeling of the material
 - residual resistance, influence of grain boundaries, band-structure, e-ph counting, etc
- FeSe is also studied for higher gradient \rightarrow H_{sh} calculation
 - Z. Lin et al SUST 34 015001 (2021)
- Deposition process: CVD, PVD (?)

Summary

- Current SRF technology is at the risk of sustainability for the future
- Materials beyond Nb or even beyond Nb₃Sn could be useful to

- residual resistance, influence of grain boundaries, band-structure, e-ph counting, etc
- FeSe is also studied for higher gradient \rightarrow H_{sh} calculation
 - Z. Lin et al SUST 34 015001 (2021)
- Deposition process: CVD, PVD (?)

backup

Material table

Material	Т _с (К)	ρ _n (μΩcm)	µ₀H _{C1} (mT)*	μ ₀ H _{C2} (mT)*	µ₀H _c (mT)*	µ ₀ H _{SH} (mT)*	λ (nm)*	<u>ج</u> (nm)*	∆ (meV)	Туре
Pb	7,1		n.a.	n.a.	80		48			I
Nb	9,22	2	170	400	200	219	40	28	1.5	II
NbN	17,1	70	20	15 000	230	214	200-350	<5	2.6	II
NbTi			4-13	>11 000	100-200	80-160	210-420	5,4		
NbTiN	17,3	35	30	15 000?			150-200	<5	2.8	II
Nb ₃ Sn	18,3	20	50	30 000	540	425	80-100	<5	<5	Ш
Mo ₃ Re	15	10-30	30	3 500	430	170	140			II
MgB ₂	39	0.1-10	30	3 500	430	170	140	5	2.3/7.2	II- 2gaps**
2H-NbSe ₂	7,1	68	13	2680- 15000	120	95	100-160	8-10		II- 2gaps**
YBCO/Cuprates	93		10	100 000	1400	1050	150	0,03/2		d-wave**
Pnictides Ba _{0.6} K _{0.4} Fe ₂ As ₂	38		30	>50000	900	756	200	2	10-20	s/d wave**

Claire Antoine SRF2021 tutorial

$$N(\epsilon)N(\epsilon + \hbar\omega)$$
 and $e^{-\epsilon/kT}N(\epsilon)N(\epsilon + \hbar\omega)$ ($T = 0.2, \omega = 0.02$)

