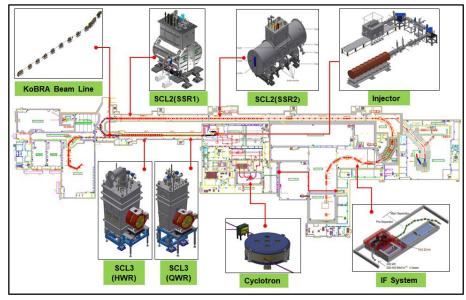
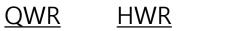
Clean assembly of the warm section and cryo-module in the RAON accelerator tunnel


Jangwon Kwon

2023. 12. 05 Institute for Rare Isotope Science

RAON Accelerator

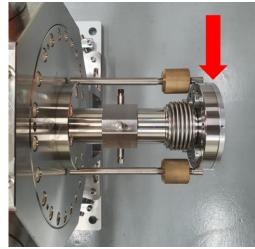
Cavity and cryomodule


RAON acclerator

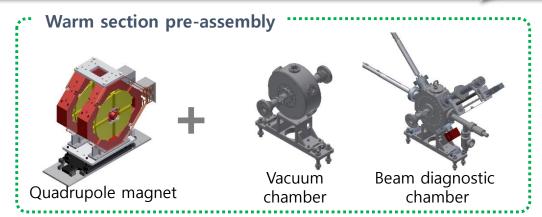
SSR1

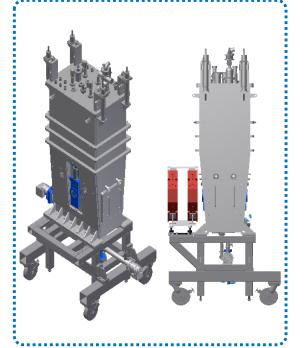
SSR2

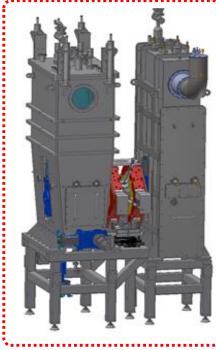
EM Parameter of QWR and HWR


	QWR	HWR
eta_{opt}	0.047	0.12
f [MHz]	81.25	162.5
L _{eff}	173.5	221.5
R/Q [Ω]	469	295
E_p/E_{acc}	5.7	5.2
$B_p/E_{acc} [mT/(MV/m)^2]$	10.4	9
E _{acc} [MV/m]	6.1	6.6
V _{acc} [MV]	1.06	1.46
QR _s	18.1	36.8

	Cavity	# of cav.	# of CM	Cav. Op. T (K)
SCL3	QWR	1	22	4.5
	HWR	A-2	13 +2	2.05
		B-4	19	2.05
SCL2	SSR1	3	23	2.05
	SSR2	6	23+2	2.05


RAON Accelerator


- Warm section with Quadrupole Doublet
 - 1 chamber (beam diagnostic device as option)
 - 1 BPM, 1 BLC(36 mm Nb Ring), 1 Beam Pipe
 - Assembly at class 10 clean room
 - Length adjuster for shrinking and expanding
 - 6 mm thickness plate with 23 mm cut bolt



Clean Assembled chamber for SCL3

Installation of cryomodule

① SRF building → ISOL loading area

② Magnet top-bottom separation/height adjustment

③ Magnet + vacuum(beam diagnostic) chamber assembly/alignment

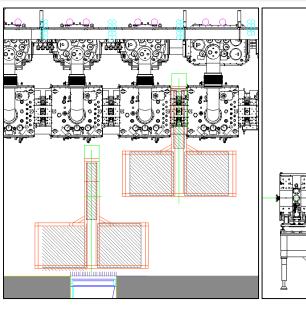
4 Place the warm section on the cryomodule

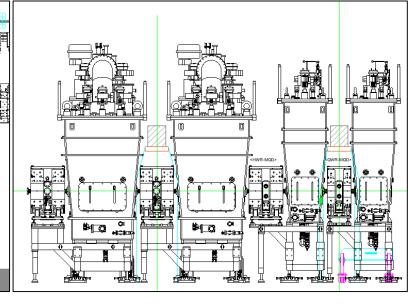
⑤ Alignment between warm sections and cryomodule

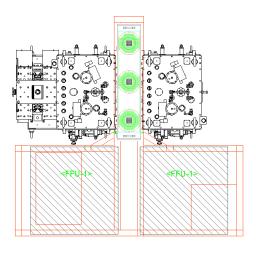
6 Moving CM into the tunnel, then install it

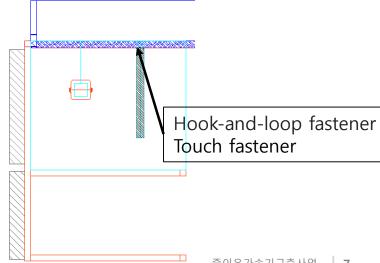
- 1st version of clean booth at injector section
 - Assemble BPM side to CM gate valve
 - Big scale of clean booth
 - House 2 CMs in the booth
 - It took so long time to satisfy assembly condition
 - ③ It must be moved for ECR installation

- 2nd version of clean booth at the SCL3 tunnel
 - Assemble Beam pipe to 'next' CM gate valve
 - Big size
 - It cannot be left in the accelerator tunnel
 - There are contamination probability at a gap between booth-CM
 - : near the gate valve is complex
 - SolutionLong support wheels underneath the CM
 - : lots of interference, especially moving in the tunnel






4.2m height


Over the cryomodule

- 3rd (current) version of clean booth
 - HEPA FILTER
 - 2 * 1172-1172-200H
 - 1 * 350-1000-200H (**3 fans**)
 - Length 2900 mm (expandable 3430 mm)
 - The width of entrance 3000 from injector section
 - Width: 3000 mm
 - Antistatic PVC sheet around the booth
 - © Easy to move around & out of tunnel
 - Solution
 No support bar (CM side) required
 Fits all (QWR, HWR-A, HWR-B)

- 3rd (current) version of clean booth
 - Second Assembly the both sides, BPM & Beam pipe
 - Compact size (2.2 m height)
 - Vacuum Pumping cart can be easily moved in/out
 - © Exposed area around CM gate valve is minimized
 - It takes less time to reach a clean assembly condition

10 mm between assembly parts, working area less than 10 cm

Making plane using split Board

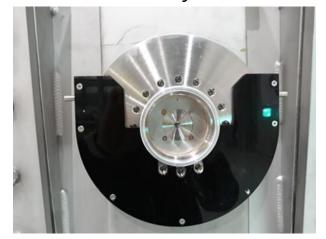
2.2m height **Between** the cryomodule

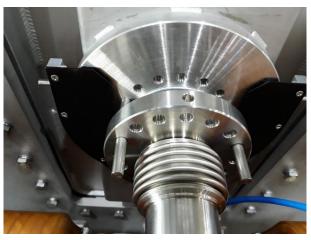
Installation of clean booth

RISP

- Clean Booth installation procedure
 - Blow compressed air into the warm section.
 - Wipe down the warm section with a wet wiper
 - Bolting the board to the CM gate value
 - Clean booth is placed between CMs
 - Turn on the fans (HEPA filters).
 - Attach the booth to the board.
 - Move the vacuum pumping cart into the booth.
 - Clean Booth zip closure.
 - Blast compressed air into the warm section.
 - Wiping down the clean booth, warm section, floor and pumping cart with a wet wiper
 - Wipe again with ethyl alcohol except the floor.
 - Particle counts around warm section and pumping cart.
 - Wait a few hours until it reaches to clean condition.

There is a person behind the module





RISP

Tools for assembly

Helicoflex seal and seal guide

purging line

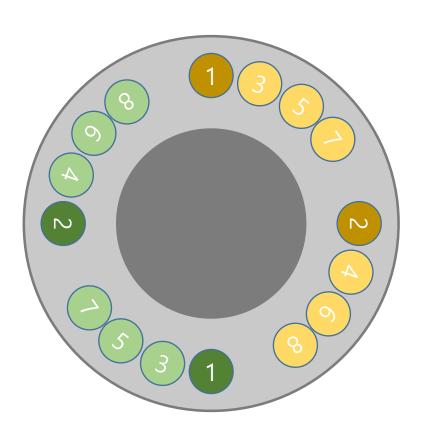
Cloth and gloves

Torque wrench

Particle counter

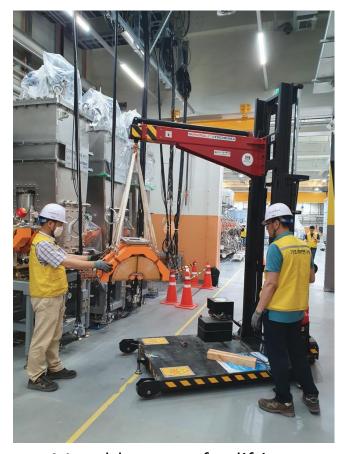
Length adjuster

Clean assembly


- Beamline assembly (Warm section to CM Gate valve) procedure
 - Wearing clean gowns and shoes.
 - Wiping down booths, chambers and tools with ethyl alcohol.
 - Nitrogen gas is sprayed on to the assembly area using an "ion gun."
 - Assemble angle value of vacuum pumping cart to chamber.
 - Open AV and pressurize with nitrogen gas to 1.05 bar slowly with mass flow controller.
 - Assemble as quickly as possible after particle inspection
 - Nitrogen gas is sprayed onto the assembly area using an "ion gun."
 - Approach towards the gate valve using an length adjuster.
 - Remove tape attached to CM gate valve
 - Remove bolts and plates (of Warm Section beam pipe).
 - Dropped the Vition O-ring with awl.
 - Preparation includes installation of seal (Helicoflex) using seal guide.
 - Attach the seal to the GV.
 - Use the length adjuster to bring the plate closer to the GV and seat the seal.
 - Tighten a few bolts by hand.
 - Remove Seal guide
 - Add more bolts, then remove the length adjuster.

From here N2 gas is purged out of the chamber.

Clean assembly


- Tightening procedure
 - There are 16 M8 25 mm silver bolts.
 - Two workers use two torque wrenches to tighten opposite sides at the same time.
 - If the bolt rotates even slightly when tightening, tighten it again with the same torque until it stops rotating.
 - Torque strength start with 40 kgf.cm (~15 times) "If pressure reach 1.05 bar Close the MFC"
 - 50 kgf.cm (~7 times), 60 kgf.cm (~2 times)
 - 70 kgf.cm (1 time), 80 kgf.cm (1 time)
 - 90 *kgf.cm* (1+1 switching the torque wrench)

Bolt for tightening flange

Vacuum leak test

- After assembly ..
 - Vacuum the chamber slowly at 80 ccpm using MFC (takes about 5 hours).
 - Helium Leakage Test
 - SIP and NEG pump degassing & activation
 - Close and disassemble the angle valve
 - pumping cart out
 - clean booth out
 - Connect BPM cables
 - Install the top side of quadrupole magnet.
 - Connect remaining signal cables

Movable crane for lifting the top side of quadrupole magnet

Conclusion

- A compact clean booth applicable to RAON's 3 different type modules has been developed.
- Using "Length adjuster" helps a lot; Chamber assembly, moving, assembly to CM
- An optimized helico-flex seal installation and assembly procedure was established.
- All of "warm section" and "module" of SCL3 successfully clean assembled.
- Lessons learned
 - Because the O-ring is installed on the pipe side and is removed using an awl, there is a risk of damage to the device.
 - If the O-ring is installed with a groove on the plate side, it will be easier to remove.
 - Concerns about "claustrophobia" among workers.
 - Consider enough passage to go the other side of module.