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ESS CM and cavities parameters

| mMB_| _HB

B 0.67 0.86
Cell number 6 5
Eacc (MV/m) 16.7 +10% 19.9 + 10%
Qo > 5 10°
Rep. rate (Hz) 14
RF pulse length (ms) 3.23.6

italics = CM test values at Saclay




Motivation and background

- One of the main causes for the degradation of superconducting cavity quality factor and machine final performance
Field emission: - Mostly originates from “dust” particle contamination
- It can be enhanced by gas contamination (HC adsorption)

Clean room Diagnostics Recovery/Mitigation

Cavity preparation | X-ray detection I Surface treatment
Clean environment is mandatory toIX-ray pattern emerging from the IDevelop treatments capable to
preserve the cavity package high " cryomodule is an effective “recover cavities performance or

performance. Improvement in | method to diagnose field Imitigate detrimental effects in the
manipulation, pumping/venting y emission and evaluate recovery Imost cost effective way.
procedures and automation can be = or mitigation methods.

valuable for high performance and mass | |

production.
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Accelerator R&D Roadmap (European Strateqgy for Particle Physics )

Field emission will become even more relevant for future high gradient machine

Electron kinetic energy [MeV] Eacc=20MV/m




y—Diagnostic system for high performance cavities and cryomodule

» We are interested in versatile and large-area coverage detectors:
» Plastic scintillators can be shaped in different forms
= Reasonably cheap with respect to the area coverage
» Largely used in particle physics (e.g. Sci-Fi Tracker in LHCDb)
» We started by testing a plastic block (10x50x1500mm) and fibers (@1x1500mm) as a proof of concept
» We are developing dedicated Geant4 applications for cryomodule and cavity testing allowing us to optimize detectors with respect to the radiation
emerging from the cavities

— . ESS cryomodule installed in the test stand at Saclay  Scintillator block installed on ESS cryomodule
Base plastic is Polyvinyl toluene during power test in Saclay, close to a Nal(TI)

(PVT) scintillator.

 Detectors are at room temperature (easy to install and change configuration)
» Possibility to study field emission radiation pulse by pulse, with time resolution within the pulse




Detector development (generation)

_

Photomultiplier + LPS ~10 us Implementation/ “slow”
Response speed / cost per detector, read out
speed (scope)

Cheaper cost per detector, Fast
acquisition/analysis / need dedicated ASIC

I Photomultiplier + fast amplifier ~1ns
111 MPPC* + dedicated readout ~1ns

We have collected data for Gen. | at CEA and ESS, Gen. Il is ongoing, we have some preliminary data from
ESS (TS2), Gen. lll is under development (tested in mid-2024)

@ *Multi-Pixel Photon Counter, Silicon Photomultiplier 6



y—Diagnostic system for hlgh performance cavities and cryomodule
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CAV1 excited with nominal pulse, the maximum Eacc is about 21.2MV/m (black), radiation detected by block at
GM1 position, close to cavity (red), radiation detected by block (green) and from fiber (blue). Right: zoomed and
normalized view of the same pulse where it is possible to appreciate closely the change in the radiation amplitude
due to Lorentz force detuning.

Proof of concept during ESS cryomodule test in v Time-resolved radiation detection pulse by pulse
CEA and Lund

Particle tracking code

Eleclron kincelic encrgy [MaeV] Eacc—20MV/rm

Single emitter trajectories calculation with one cavity Cavity.at E;-. = 20 MV/m
powered (CAV4) while the adjacent is off (CAV3). Trajectory S S '

colours are determined with respect to the electrons kinetic v 2D axial symmetry dedicated particle tracking code

energy. All the impact on the beam tubes and adjacent cavity
@ have energies between 12 and 15MeV. v' Customizable particle-matter interaction application 7




v—Diagnostic system for high performance cavities and cryomod
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CAV1 excited with nominal pulse, the maximum Eacc is about 21.2MV/m (black), radiation detected by
block at GM1 position, close to cavity (red), radiation detected by block at GM6 position (green) and
from fiber (blue). Right: zoomed and normalized view of the same pulse where it is possible to
appreciate closely the change in the radiation amplitude due to Lorentz force detuning.
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GEANT4

A SIMULATION TOOLK]|

Radiation is clearly detected during cavity pulse

FE on CAV4 iris
Trajectory evolution while varying the phase around the typical 15 MeV, CAV3 impact case
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N
Time-resolved radiation measurements (details)

More details within the pulse structure

Using the plastic scintillators with PMTs (Gen 1)

Block
Fibres

1000 2000 3000
Time ()

radiation from the cavity
follows Eacc variations

radiation from the cavity
follows Eacc variations

2ige® radiation spike during
o et cavity decay:
radiation spike at the end of filling time : m.\s\n’«\ coincides with e- detection

coincides with e- detection in the coupler N\ofe in the coupler, while
@ crossing a MP band
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“First time we can
compare data from
different detectors

generation”
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FPC electron emission
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“thanks to 10us time resolution, we can
distinguish between FE and FPC electron
emission”

FPC4 low energy electrons (he're 100 eV ~
generate secondary tracks \
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Data taken during CM36 test @QESS (light pulse count wrt time)
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Counts

Fillin __ Decay
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1400 - i All cavities 19MV/m < We observed a clear correlation between
. light pulse counting and activity in the
|

1200 A I fundamental power couplers
: X It is possible to correlate the light pulse

1000 - : arrival time to the cavity pulse
: > It is possible to measure the pulse amplitude
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Light pulse amplitude wrt Eacc

Probability Density
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Escaping scattered
gamma ray

Single Compton scattering

Pair production

‘Fhowpesk,”  Fignre 1.2 The “small

he > B e® o “;:km"' detector” extreme in
~Bhotopesk™ i~ gamma-ray spectroscopy.
% \ o 9K The processes D.f photo-
ll-emergy electric absorption and
peak single Compton scattering

give rise to the low-energy
Compton continuum spec::rnm = tl:l', left. At
higher enerpies, the pair

/ production process adds a
1 double escape peak shown
{ Ko E the—2mye) kv E in the spectrum at the
Compton eoge right.

from G.F. Knoll

X We are in a “small detector” approximation, only primary
interactions are responsible for energy deposit (scheme
below)

> More *statistic is needed, to estimate the full-energy peak

> Calibration with known gamma sources is planned

*more detectors/coverage and more acquisition time
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Outlook

Along with current data acquisition at ESS (TS2), we are developing a detection system based on Saclay gen Ill to
be equipped in our vertical cryostat.

Optical photons detected with incident gamma from 0.1 to 1 MeV (top to bottom)
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Please check the talk and paper at SRF2023 for more details doi:10.18429/JACoW-SRF2023-FRIBA02 15
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Thank you for your attention

A big thank you to all the TS2 team at ESS
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Case 2: FPC electron emission (CEA TEST)
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“thanks to 10us time
resolution, we are
able to distinguish
between FE and FPC
electron emission”

FPC4 low energy électrons (here 100 eV ~ threshold SEY>1 ) are captured by the cavity field,
generate secondary tracks




Optical photons detected with incident gamma from 0.1 to 1 MeV (top to bottom)

0 200 400 600 800 1000
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Optical photons per Gamma
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Photons
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Figure 3.36: Dependencies of mean number of produced photons per MIP (a) and ratio of
photons reaching one fibre end £ (b) on distance |y| of the MIP’s trajectory

from fibre axis. The dashed line in (a) shows a trend proportional to the
MIP’s path length in the fibre core. Values in (b) are obtained at three
distances = of the excitation from the fibre end.



Scintillation process
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Why investigate radiation induced by FE

Many projects/machines report concerns about FE and degradation with beam operation

Within projects with many contributors, comparison between radiation measurements on a given cavity

- at different test facilities
« at different stages of testing (VT, CM test bunker)
IS not straightforward, unless they have the exact same setup

Need for quantitative measurements of the radiation source(s) especially in the development phase of
prototypes, to qualify preparation and assembly tooling and procedures

Characterization has more value (emitter(s) position and electronic current) but is probably very challenging

A combination of dedicated instrumentation and simulation models can improve the situation

@ G. Devanz - CEA-Saclay | SRF2023 01/12/2023 23



Some options for radiation measurement

Area monitors;:

Our area monitors measure H*(10) equivalent dose rate
 GM tubes
« are not calibrated above ~1.3 MeV
» saturate earlier than spec when radiation is pulsed (dead time)
* jonization chambers are more suited
* neutron detector (rem type,...)

cannot be placed close to the cavity, the environment is always interfering.
usable in a cryomodule test environment as long as a set of reproducible placements is defined and applied

Scintillator based detectors:

Scintillating medium coupled to a photodetector
» Inorganic scintillators are widely used i.e. Nal (spectrometry)

» plastic (PS, PVT,...) is a good candidate (low cost, any shape)
* inthe form of fibres, provide the transport of the scintillation photons

« fast scintillators : extra functionnality based on coincidence can be added

@ G. Devanz - CEA-Saclay | SRF2023 01/12/2023
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