

Overview of Plasma Processing Activities at IJCLab

TESLA Technology Collaboration Meeting Fermilab Dec 5-8, 2023

> Camille CHENEY PhD student

SAMPLE CLEANING •

- ICP plasma source (ibss Group GV 10x DS Ahser)
- Quartz Crystal Microbalance (QCM) + Carbon coating
- Removal rate measurements: varying gas mixture, pressure, gas flow, RF power

CAVITY CLEANING

- SPIRAL2 QWR cavity (with fundamental power coupler) •
- Study plasma ignition, plasma shape

IJCLab Plasma Processing Timeline

2021: THE BEGINNINGS

• Setting up a test bench

2022: FIRST EXPERIMENTS

- People involved:
 - Post-doctoral student (not full time)
 - MSc degree intern (5 months)
 - D. Longuevergne (supervisor)
- Removal rate measurements of carbon coating
 - Testing various gas mixtures
- First tests on a SPIRAL2 QWR
 - Fundamental mode
 - Custom length antennae

2023: MORE INVESTIGATIONS

- People involved:
 - Myself (5 months intern \rightarrow full time PhD)
 - D. Longuevergne (PhD supervisor)
- SPIRAL2 QWR deeper study
 - Fundamental Power Coupler (FPC)
 - Higher Order Modes (HOM)
 - Coupling measurements
 - Plasma ignition/distribution study
 - COUPLER BREAKDOWN
 - Understand
 - Mitigate/delay

What is coupler breakdown?

• Definition:

- Phenomenon happening during plasma processing when plasma confines around the powered antenna (FPC or HOM coupler).
- It appears above some RF power threshold.

• Is it an issue?

• YES (for HWRs and ellipticals)

- Sputtering of antenna material onto Nb = pollution (*Cf.* FRIB HWRs [1] and JLab elliptical [2])
- Can damage isolating ceramic leading to vacuum leaks (Cf. IMP/CiADS HWRs [3])

Maybe NO for QWRs (at least for plasma processing effectiveness)

- Field emission onset is delayed after processing, despite breakdown! (*Cf.* FRIB QWRs [1]) "we did not observe damage to the coupler even after more than 10 hours of cumulative coupler plasma processing"
- No damage/sputtering observed for SPIRAL2 QWR as well

• <u>A</u> Must be avoided anyway, because it's very risky for cavity and coupler integrity

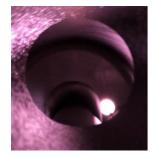
Any explanation?

- Not yet fully understood
- We have some hypothesis

[1] W. Hartung et al., "Investigation of Plasma Processing for Coaxial Resonators"

[2] T. Powers et al. "Plasma Processing of SRF cavities"

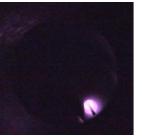
[3] A.D. Wu et al., "The Destructive Effects to the RF Coupler by the Plasma Discharge"



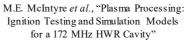
Coupler Breakdown: Every Resonator Suffer

QWR

SPIRAL2 88 MHz

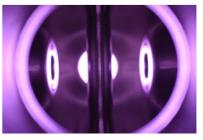


FRIB 322 MHz


HWR

W. Hartung *et al.*, "Investigation of Plasma Processing for Coaxial Resonators"

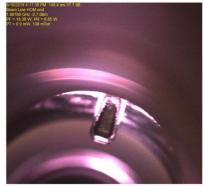
CiADS 162.5 MHz Ignition Testing for a 172 M



ATLAS 172 MHz

A.D. Wu *et al.*, "The Destructive Effects to the RF Coupler by the Plasma Discharge"

Spoke


PIPII SSR1 325 MHz

P. Berutti., "Plasma Cleaning at FNAL: LCLS-II HE vCM Results and Ongoing Studies on Spoke Resonators"

Elliptical

CEBAF C100 1.5 GHz

T. Powers *et al.* "Plasma Processing of SRF cavities"

SPIRAL2 QWR Coupler Breakdown

• 1st Regime: No plasma

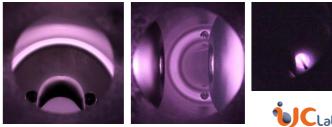
• No ignition

🚓 📇 | Physique des Accélérateurs

Accelerator Physics

• "standard" behavior of an RF cavity

• 2nd Regime: Cavity plasma ignition


- Plasma ignites in the cavity volume
- Plasma follows high E field regions

SPIRAL2 QWR Mode 1 E field

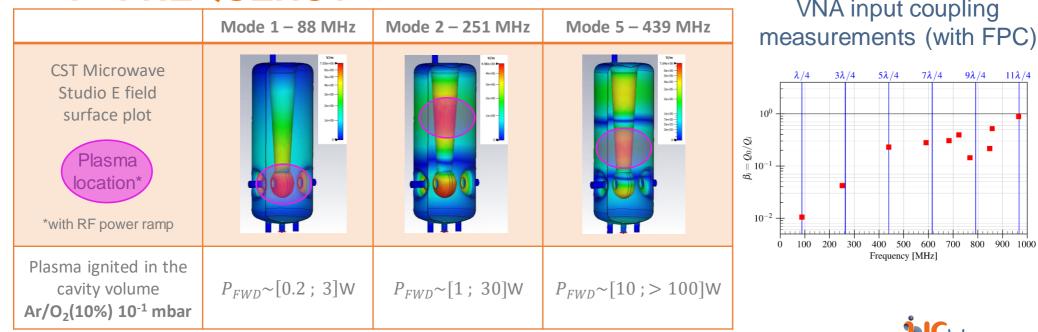
• 3rd Regime: Coupler Breakdown

- Plasma confines around the power coupler
- No visible traces of sputtering

How to delay coupler breakdown? (1/4)

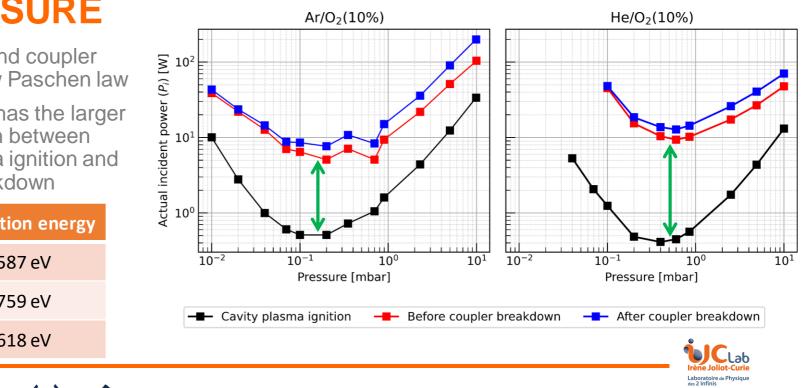
At IJCLab, we played on:

- 1. Frequency
- 2. Pressure
- 3. DC bias of the power coupler



How to delay coupler breakdown? (2/4)

1. FREQUENCY



 $11\lambda/4$

How to delay coupler breakdown? (3/4)

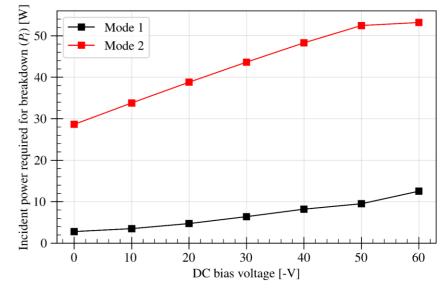
SPIRAL2 QWR, FPC, Mode 1, f = 87.885 MHz

2. PRESSURE

- Both cavity and coupler ignition follow Paschen law
- He/O₂(10%) has the larger power margin between cavity plasma ignition and coupler breakdown

Gas	1 st ionization energy
He	24.587 eV
Ar	15.759 eV
0	13.618 eV

🚓 📇 | Physique des Accélérateurs


Accelerator Physics

How to delay coupler breakdown? (4/4)

3. DC BIAS OF THE POWER COUPLER

- Negative DC bias applied to the power coupler
- The lower the V_{DC}, the higher the power required for breakdown
- Mode 5 is not showed due to bias tee power limitation (100W)
- On the contrary, positive bias tends to favor coupler breakdown

Summary

- Coupler breakdown is identified as the main risk and limiting factor of plasma processing
- We are studying coupler breakdown to understand what is causing it, and how to delay/avoid it
- Higher frequencies, as well as negative DC bias look favorable
- Coupler breakdown tends to follow Paschen law

• FUTURE PLANS:

- Plasma computer simulations
- Set up plasma diagnostics (Langmuir probe, OES)

Acknowledgments

- Vacuum people at IJCLab
- G. Curley and S. Guilet for their plasma expertise
- Plasma processing teams at Fermilab, FRIB, Jefferson Lab for useful discussions, information sharing, and suggestions
- Special thanks to T. Powers, T. Ganey, N. Raut and A-M. Valente Feliciano for welcoming me at Jefferson Lab
- This work was partially supported by the European Union's Horizon Europe Marie Sklodowska-Curie Staff Exchanges programme under grant agreement no. 101086276.

Co-funded by the European Union

Thank you for your attention!

