

Degradation and Recovery of Cavity Performance in SRILAC Cryomodules (Pulsed RF conditioning)

N. Sakamoto, O. Kamigaito, K. Ozeki, K. Suda, K. Yamada

RIKEN Nishina Center

TTC meeting@FNAL December 6 2023

Nov27,2023

SCQWR for SRILAC

■ Bulk Nb (RRR 250) with BCP based Surface processing

BCP(100 μ m) \rightarrow Annealing(700° C, 3hr) \rightarrow BCP(20 μ m) \rightarrow Baking(120° C, 48hr)

Parameters		Top torus (IND)	
	Λ	Stem (Nb)	
Frequency (MHz)	73.0 (c.w.)	Bulk Nb cavity Magnetic shield Outer cylinder (Nb)	
Optimum β	0.08	He vessel (Ti)	
$R_{sh}/Q_0 (\Omega)$	579 E		
G (=R _{sh} /Q ₀)	22.4 📲		
V _{acc} (MV)	2.2	End drift tubes	
E _{acc (} MV/m)	6.8		
E _{peak} /E _{acc}	6.2		
B _{peak} /E _{acc} (mT/(MV/m))	9.6 🗸	Beam Drift tube	
Operating Temerature(K)	4		
Target Q ₀	1×10 ⁹	Bottom end cap (Nb) FPC port	

TTC Meeting 2023@FNAL

N. Sakamoto

SCQWR for SRILAC

■ Bulk Nb (RRR 250) with BCP based Surface processing

BCP(100 μ m) \rightarrow Annealing(700° C, 3hr) \rightarrow BCP(20 μ m) \rightarrow Baking(120° C, 48hr)

Parameters		1010						
							4K	
Frequency (MHz)	73.0	5		Prototype			- Bbg < 10 r	nG-8W
	(C.W.)			<mark>#1 /</mark>				
Optimum β	0.08	~	• • • • • • • • • • • • • • • • • • •	#3 #4			7777 8 8 8 5	32W
$R_{sh}/Q_0 (\Omega)$	579	10 ⁹ ຈິ		#5////////////////////////////////////		SRILAC C	toal n the	
G (=R _{sh} /Q ₀)	22.4	5	5	#8	<u>K</u>	emi	seinn	64W
V _{acc} (MV)	2.2	2		#9 #10		6.8 MV	/m	
E _{acc (} MV/m)	6.8	10 ⁸						
E _{peak} /E _{acc}	6.2		0°1 2	34	56 E[789 MV/ml	10 11 12 1	.3 14
B _{peak} /E _{acc} (mT/(MV/m))	9.6		لسلسل					
Operating Temerature(K)	4		0 10 20	30 40	B _{peak}	[mT]	0 100 110 120	130
Target Q ₀	1×10 ⁹			لىسىلىد				
			0 10	20 3	0 40 E _{peak}	50 [MV/m]	60 70 8	0
C Meeting 2023@FNAL	Ν	I. Sak	amoto					Slide

Cryomodule for SRILAC

- Operating temperature : 4.5 K.
- 80 K Thermal shield with Liquid N₂
- He Ports:Pre-cooling port, Supply port, Return-port
- Heat load estimation : 18 W/Cryomodule (not confirmed)
- Opening of the return valve controls He pressure.

- FPC: 6 W, Helium pipes: 4.5 W, Tuner: 2.5 W,
- Cavity support: 2 W
- Liquid helium cryogenic system
 HELIAL MF (Air Liquide)
 - +MYCOM Compressor(Maekawa
 - Cooling capacity: 700 W@4.5 K
 - *Electric power consumption of the compressor is 300 kW Cavity vacuum is separated from isolation vacuum.
- Cavities are mounted on the bottom base plate
 - Single RF window FPC

Opening of the supply valve controls liquid helium level.

TTC Meeting 2023@FNAL

N. Sakamoto

SRILAC Operation history

TTC Meeting 2023@FNAL

N. Sakamoto

Mile stones of SRILAC

First cooling : 2019/10/18

First beam : 2020/1/28

Vacuum leak from coupler windows

SC05: 2019/11/18, SC06:2020/11/27

Degradation of cavity performance caused decrease of acceleration voltages Multipacting(MP) : Cavities could not hold acceleration voltages.

Field emission(FE) : FE increase occurred during beam operation repeatedly.

2020/12/1	SC07	MP
2020/12/7	SC08	FE
2021/6/9	SC06	FE
2021/6/29	SC08	FE
2021/9/30	SC06	FE
2021/12/6	SC06	FE
2022/1/3	SC08	FE
2022/6/21	SC02	FE
20221/11/144	SC09	FE
2022/11/14	SC08	FE

TTC Meeting 2023@FNAL

N. Sakamoto

Field emission

During a beam operation X-ray level of CM1 monitor was suddenly increased.

TTC Meeting 2023@FNAL

N. Sakamoto

TTC Meeting 2023@FNAL

N. Sakamoto

TTC Meeting 2023@FNAL

N. Sakamoto

Again X-ray level of CM1 monitor was significantly increased.

Beam operation was continued with a voltage of 950 kV.

Acceleration Volgages

RUN	Date	SC01	SC02	SC03	SC04	SC05	SC06	SC07	SC08	SC09	SC10	Total (kV)
#2	2020/7/17	1447.6	1300.6	1341.1	1317.7	0.0	1406.3	1413.7	1353.2	1448.7	752.0	11780.9
	2020/7/26	1445.7	1299.1	1339.2	1316.7	0.0	1404.1	1411.8	1351.0	1447.1	1972.1	12986.8
#3	2020/10/19	1398.8	1438.3	1355.3	1448.4	0.0	1469.6	1417.6	1404.5	1394.8	425.1	11752.4
#4	2020/11/27	1565.8	1573.1	1565.3	1561.7	0.0	0.0	1474.7	1241.7	1490.8	1505.9	11979.2
	2020/12/9	1583.3	1582.3	1581.5	1581.3	0.0	0.0	854.4	1024.5	1494.1	865.0	10566.4
	2020/12/13	1579.3	1581.2	1576.3	1574.7	0.0	0.0	373.5	1075.7	1583.7	1263.7	10608.3
#5	2021/5/19	1446.6	1447.1	1444.1	1446.4	692.9	1090.3	375.1	1030.6	1453.6	1201.9	11628.7
	2021/6/9	1446.6	1447.1	1444.1	1446.4	692.9	1090.3	375.1	1030.6	1453.6	1201.9	11628.7
	2021/6/30	1443.3	1445.4	1449.1	1448.2	692.2	1089.8	374.7	928.6	1554.1	1048.5	11473.8
#6	2021/10/22	1443.0	1443.5	1439.5	1443.2	542.5	922.1	480.7	716.8	1451.9	1016.1	10899.3
	2021/11/6	1450.6	1452.6	1447.3	1452.9	545.4	927.0	482.5	720.9	1460.4	815.1	10754.8
	2021/12/6	1535.0	1441.8	1437.8	1442.6	548.0	821.8	513.8	716.3	1450.2	741.0	10648.3
	2022/1/3	1543.6	1449.7	1446.6	1297.1	563.2	678.6	522.1	720.3	1506.4	783.4	10511.2
#7	2022/3/14	1563.1	1444.4	1435.2	1140.5	556.9	671.3	523.3	730.5	1537.2	1038.5	10640.6
	2022/4/6	1510.7	1482.8	1434.5	1163.8	553.5	653.6	520.5	627.8	1536.4	1068.2	10551.8
	2022/6/21	1523.4	897.9	1477.6	1221.1	671.5	809.8	562.0	636.0	1552.4	769.0	10120.8
	2022/7/15	1345.8	1043.0	1476.5	1222.4	670.9	809.5	561.8	635.4	1551.8	769.7	10086.8
#8	2022/10/7	1346.2	1041.7	1478.6	1219.5	669.9	808.8	561.4	632.7	1547.2	759.5	10065.4
	2022/11/4	1364.2	1037.6	1469.6	1215.9	666.0	804.6	558.5	631.0	1150.5	1118.7	10016.7
	2022/11/14	1367.8	1040.3	1472.7	1216.8	668.2	807.1	560.4	631.7	1021.6	1293.5	10080.2
	2022/11/30	1370.5	1042.3	1475.3	1218.3	669.3	809.0	561.4	632.8	1156.1	1125.9	10060.9
#9	2023/1/17	1368.1	1308.1	1273.2	1136.3	667.4	1074.6	856.2	632.0	992.9	1019.0	10327.9
#10	2023/4/13	1365.5	1332.0	1279.5	1145.3	668.6	1098.0	883.1	852.8	1292.0	812.5	10729.4

Available total acceleration voltage was decreased significantly.

TTC Meeting 2023@FNAL

Cure for degraded cavity at KEK

KEK has succeeded to cure the degraded cavity performance by a pulsed RF conditioning with high power. (E. Kako et al., SRF17, MOPB097, pp. 289–293.)

In2015, increase of the x-ray radiation level reached to 100 mSv/h in No.3 cavity, 10 mSv/h in No.2 cavity and 1 mSvh/ in No.1 cavity for cERL.

Figure 10: Time evolutions of accelerating gradients, Eacc, (top) and x-ray radiation levels (bottom) during high power pulsed RF conditioning for 8 hours.

The x-ray radiation levels in each cavity dramatically decreased by high power pulsed RF conditioning .

TTC Meeting 2023@FNAL

Setup for Conditioning

Slide 8

First attempt on recovery of SC07 was performed at 4.5 K with a conditioning method using high-voltage pulsed RF power, which is relatively simple and imposes a low load on the cavity and its coupler window.

The amplitude modulation set to 0.5 Hz and a 1% duty RF pulse with a width of 20 ms was adopted which was sufficient ot raise the cavity voltage (Pt) up to 90% with a detuning of 50 Hz.

TTC Meeting 2023@FNAL

First Attempt on Recovery (SC07)

Peak cavity voltage was kept 0.65 MV for 2h but there found no effect on x-ray reduction.

Peak voltage was further increased step wise to 1.34 MV. Then x-ray level was successfully reduced.

Conditioning of SC09

Slide₁₀

Multipacting (MP) was another issue in cavity operation.

Sudden voltage drop was also observed during RF pulse conditioning, accomplished by variation in the vacuum pressure.

TTC Meeting 2023@FNAL

Pulsed RF power and onset voltage

The SC09 cavity was repeatedly conditioned by gradually raising the maximum pulsed voltage.

The onset voltage became increasingly high reaching 1.4 MV higher than that of the initial measurement.

TTC Meeting 2023@FNAL

N. Sakamoto

Slide12

- The SRILAC has been in operation for the past four years.
- However, the degree of performance degradation hs become a significant issue, jeopardizing the continuity of operations.
- Therefore, high-power pulsed RF conditioning was tested to restore the performance.
- The conditioning worked well (so far) to successfully suppress the xray levels and MP.
- Currently, minimal conditioning is being performed to sustain beam operation.
- It is planned to further high-power pulsed RF conditioning with higher voltages.

Questions:

Why the pulsed RF conditioning is so effective to SRILAC? Is FE harmful for the cavity performance? How long will the conditioning be effective? Is helium processing effective to SRILAC?

TTC Meeting 2023@FNAL

Acknowledgement

- The authors are grateful to Prof. H. Sakai from KEK for sharing his valuable experience on the pulsed power conditioning of cERL.
- They also thank Prof. K. Saito for joining our discussion on how to mitigate the degraded cavities.
- We sincerely thank all the operating staff of the SHI Accelerator Service Ltd. for their effort to ensure the continuous opera- tion of the SRILAC.

TTC Meeting 2023@FNAL

1SC-ECR

2RILAC

3 Joint Box and Cold Box

Constesy of T. Nagatomo

AR I

④Transfer Line

5Cryomodules

Overview of SRILAC

■ Three Cryomodules host 10 SC-QWRs (CW, 73 MHz) at 4.5 K.

- RT Quadrupole magnets are located in the MEBT.
- Vacuum pressure of MEBT line is about 1x10⁻⁸ Pa with IP and NEG pumps.
- At the both end of the SRILAC three-stage differential pumping systems (DPS) are introduced to prevent gas flow from RT section where several x10⁻⁵ Pa.

