

INSTITUTE for RARE ISOTOPE SCIENCE

중이온가속기연구소

Prototyping of Single Spoke Resonators(SSRs) for RAON - Hoechun Jung -

SSR cavities are on 2nd prototyping

	QWR	HWR	SSR1	SSR2
Optimum β	0.047	0.12	0.3	0.51
f [MHz]	81.25	162.5	325	325
$L_{eff}(=\beta_o\lambda)[mm]$	173.5	221.5	276.9	470.8
$R/Q[\Omega]$	469	295	233	290
E_{peak}/E_{acc}	5.7	5.2	4.1	3.7
$B_{peak}/E_{acc} [mT/(MV/m)]$	10.4	9.0	6.9	7.7
Epeak	34.8	34.3	34.9	32.2
Bpeak	63.4	59.4	58.7	67.0
E _{acc} [MV/m]	6.1	6.6	8.5	8.7
V _{acc} [MV]	1.06	1.46	2.35	4.1
Stored Energy [J]	4.7	7.1	11.6	28.3
QRs	18.1	36.8	92.2	112.9

Installed in the SC linac already

Test for 1st SSR cavities & 2nd prototyping is starting → Check & improve all designs & processes.

SSR Development with TRIUMF (Balloon Concept)

Test @ TRIUMF (Bare: 2018. 01, Jacketed: 2019.07)

- Cost effective design: Just 4 ports, minimized # of stiffeners, less fabrication process (forming, welding)
- Narrower multipacting band: < 4MV/m
- But deep drawing for half shell is not easy. \rightarrow Plan B: Minimum straight + two shells

0.5

0.2

0.1

0.0 11

600C+20um+120C Oc

140um BCP Or

60um BCP On 1st order MF 2nd order MR

6th order MI -8th order MP

Deep Drawing Process for a Half Shell

Thickness of the Half Shell

Measuring using 3D laser scanner (Hexagon 8535-7)

Measured thickness of a half shell

3.2T 900Φ plate → 2.9~3.4T(~10% changed) 500Φ half shell

- Press dies and drawing process are well optimized
- ➔ Make balloon shapes successfully

Tests for 1st Prototypes

◆ 2 of 4 SSR1 cavities passed the qualification
 One SSR1 cavity is failed with strong field emission
 Another one is failed with thermal quench
 → Will be tested in a cryomodule

6 SSR2 cavities are fabricated
 Stocked about 1~2 years in air, cleanroom after HT baking
 2 of 6 are tested without additional HT baking & will test again with additional HT baking
 4 of 6 are tested with additional HT baking
 Check the process & contamination (foreign materials, particles, gas)

Checking Frequency: Plastic Deformation during Vacuum

	#4	4							#4 SSR	1				
	air	vacuum										Air	 Vaci 	uum
1	325.7853		Jacketing		326									
2	325.7329		light BCP	~		_								
3		325.2665	Cleanroom assembling	Hz		•								
4		324.935	After VT	Σ										
5	325.218) S	325 5									
6		325.1	Cleanroom assembling	SU(525.5									
7		324.92	After VT	n										
8	325.2678		HT baking	ec.		-	•	•	•					
9	325.2547		light BCP	ц				•		•	•			
10		324.9955	Cleanroom assembling	lat	325		*		•			•	•	
11		324.7051	After VT	Lo Lo		_		•		•				
12	325.1656		HT baking	es							<u>م</u>	•		
13	325.1581		light BCP	£							•	•		
14		324.8891	Cleanroom assembling		324.5									
15		324.6696	After VT			0	5	1	10		15	2(0	5
16	325.0727		light BCP			•	0		10			_		-
17		324.7792	Cleanroom assembling					# of	measur	ing Pr	ocedu	re		
18		324.6611	After VT											
19	325.0199		light BCP											
20		324.7557	Cleanroom assembling											
21	325.0042		light BCP											

Resonant frequencies of 1st prototypes are continually decreased : Mistake of making vacuum without fixing the beamports

25

Holding Jig for Vacuum

Table 16. Stress on cavity and Jacket with various conditions at on near room temperature								
RF, He, Iso Pressure (bar)	CM situations	Cryostat situations	Lab test situations	Beam Pipe Fixed (MPa) Niobium SS316L		Beam pipe Free (MPa) Niobium SS316L		
0, 2, 0	Cavity cooldown	Cavity cooldown		36.9	64.5	34.9	65.7	
0, 1, 0	He purge	He purge		18.5	32.2	17.4	32.9	
1, 2, 1			pressure test	18.5	32.2	17.4	32.9	
1, 0, 1	He - pump		He leak chk	18.5	32.2	17.4	32.9	
0, 1, 1		RF pump	RF leak chk	18.3	negligible	44.8	37.5	
1, 1, 0	lsolate leak chk			9.7	33.9	33.1	34.1	
0, 0, 1		He, RF-pump	RF,He leak chk	9.7	33.9	33.1	34.1	

Table 10: Stress on cavity and jacket with various conditions at or near room temperature

Fixing Jig for vacuum ! Not only for cavity cold Test

→ Send this jig to the vender

 \rightarrow Fix beamports

for leak test, clean assembly in the vender

Improved Q Factor with Additional Magnetic Shield

Additional magnetic shield

Q factor of some SSR cavities at the low gradient is lower than the expectation
→ Checked the geomagnetic field in the cryostat(13.6 ~105.6 mG)
→ Reduced the geomagnetic field with the additional shield(2.1~ 9.8 mG)
→ Decrease of surface resistance is checked with the magnetic shield by 3nΩ

Thermal Quench

Thermal Quench with no or low x-ray

- → Metallic foreign material or metallic particles
 - or poor welding
- → Visual inspection inside the cavity
 : no evidence of foreign materials
 or poor welding
 but particles from the test coupler
- ➔ Will be tested again after light BCP + HPR

But still worry about foreign materials

➔ Heavy BCP+ HT baking if there is no improvement

RF level: Slow rising & Fast falling with amplitude locking

Contamination: Particle (test coupler)

Thermal quench

- \rightarrow Visual inspection of cavity & test coupler
- \rightarrow blowing & check particles
- → Assembling with cavity when no more particle

Particles with N2 blowing in Class 10 cleanroom

	0.3um	0.5um	1um
1 st blowing	5	3	0
After 3 times	0	0	0

Reduce grey zone: cavity tilted \pm 20° & Nozzles Optimization

Contamination : Foreign Material

Nb Plates & Half shells : Dozens dents and dusts are founded after soaking

→ mechanical & chemical polishing

 \rightarrow Could not be removed perfectly

→ Need more cleaning before & during the process in the vender & sub-vender

Hard Barrier: Multipaction at High Gradient

Multipaction \rightarrow acceleration \rightarrow impact \rightarrow x-ray & secondary electrons

?

Hard Barrier due to Poor Surface Condition?

High Temperature baking
(~600°C) : November, 2021
Cold Test : September, 2023
→ Stocked in air, cleanroom
→ Poor surface condition ?
→ 600°C baking & test again

Contamination: Gas, Vacuum Spike

Thank you for your attention

Test Failure due to Test Coupler Problem for HWR Mass Production

High failure rate of HWRs qualifying test in early stage

- More than 60% failure
- Damaged surface of test couplers is checked
- After additional rinsing and higher temperature baking failure rate is reduced to around 20%

- Total pass rate with 30mm couplers is less than 70% More than 90% pass rate with new test couplers

- 12 new test couplers(40mm) are fabricated
- 51 successful cases among 56
- Pass rate is obviously increased.
- There is no evidence for surface damages

