Hi Lumi LHC Crab Cavity Cryomodules

Niklas Templeton

STFC Daresbury Laboratory UK Crab Cavity Cryomodules WP Lead

Crab Cavity Cryomodules for Hi Lumi LHC

Hi Lumi LHC Crab Cavities

2

- Crabs Collaboration
- Design Features & Innovations
- RFD SPS Prototype Cryomodule Build
- UK Lessons Learnt (so far)

Cryomodule 2018

PS

Hi Lumi LHC Crab Cavities

To **maximise discovery potential of LHC** by increasing rate of collisions

- 400 MHz crab cavities to **mimic head on collision**
- 4 cavities installed either side of Interaction Points

Double Quarter Wave (**DQW**) – vert. crabbing at CMS

- RF design by BNL & CERN
- Supplied by CERN & R.I.

Radio Frequency Dipole (RFD) – horiz. crabbing at ATLAS

- RF design by ODU
- Supplied by US-AUP & Zanon

Bunches colliding without crab crossing (left) & with the crab crossing (right)

Science and Technology Facilities Council

Thanks to Rama Calaga

HL-LHC Crab Cavity Collaboration

All cavities & CM cold validation tests at CERN (and ٠ a back up at Uppsala-Sweden)

HL-LHC PROJECT

- components by CERN
- CM cold validation tests at CERN

Dressed Cavity Equipped

Detailed Build Procedures

- Poster logic + tooling & infrastructure
- Part of Traveller (QA)
- Troubleshoots & de-risk build
- Captures critical requirements, torques & sign-off
- 'BOM kits' pre-prepared by sub-step

RFD Highlights (1/2)

Cleanroom assembly

Load Transfer Complete

Facilities Council

Top plate

integration

Cavity string pre-

cleanroom

-, 10

VANUNT

Upper cryo install

HL-LHC PROJECT

N Templeton - TTC Dec '23

10

First Welds

RFD Lowlights...

4 Lessons Learnt

...with memorable titles

"Learn from the mistakes of others. You can't live long enough to make them all yourself." – Eleanor Roosevelt

Protect Ya Bellows

Issue: hydroform **bellows dent** pre-cleanroom

Impact: minor (thankfully)

Root cause: assembly procedure execution error

Mitigations:

- Better comms between engineers & technicians
 - Procedure roll-out & sign-off
 - More technical oversight
 - Many phone calls
- Additional bellows protection installed

TLC2000 2022/01/05 11:05:57

Take On M.E. (Multi-complex Engineering)

Issue: Re-design of test rig & re-qualification of Bi Phase line

Impact: Many months delay to manage QA & resolve NCs

Root Cause: Poor supplier QA

Mitigations: developed & brought in-house:

- Welding & weld engineering
- Steel procurement
- Design of weld-test-transport jigs

Respect Yo QMS (Quality Management System)

Issue: removal & replacement of **NC bellows sub**assembly after delivery

Impact: Many weeks to fabricate, re-work & re-qualify

Root Cause: QA processes not followed

Mitigations:

- Improved quality training & refreshers
- More QA oversight
- Local instructions to remove QMS barriers

Mo Checks – Less Problems

Issue: damage to power couplers discovered at CERN

Root cause analysis & resolution: on-going

Hypothesis: complex load transfer issue

Mitigations:

- Tooling design improvements
- More intermediate test & checks
 - ISO4 glovebox for beamline tests
 - Fundamental power coupler checks

BOILD CHECK & TEST (HOLD) POINTS							
Step #	Activity	Alignment	RF	Leak Test	Other		
0	Cavity string pre-assembly	Y					
1	ISO4 string assembly		Y	Beamline			
2	FPC assembly		Y	Beamline			
3	Bi Phase welding			Welds			
4	Tuner & thermal links						
5	Top plate integration	Y	Y	Welds			
6	Top plate load transfer	Y	Y				
7	Lower cryolines & instr'n			Welds	Instr'n		
8	2K MLI						
9	Thermal Screen & 50K MLI			Welds			
10	Cryomodule load transfer	Y	Y				
11	Vacuum equipment			2ndline			
12	Cryomodule doors						
13	Outgoing acceptance	Y	Y	lnsu-vac, <mark>Beamlines</mark>	Pressure, LN2, Instr'n		
14	Transport tooling & frame				Shockloggers		

BUILD CHECK & TEST (HOLD) POINTS

Hi Lumi Crab Cavity Cryomodules

RFD SPS Cryomodule delivered Oct '23 with many challenges & obstacles overcome!

Next: series LHC Cryomodules:

DQW: 1x CERN + 4x STFC

KY ※ TRIUN

RFD: 5x TRIUMF

17

>10k components (5k unique)

>900 procedure pages

56 CM welds (24 types)

Science and Technology Facilities Council

RFD Thermal Budget

Static + Dynamic 4.1 MV (40 kW FPC)							
Source	2 K	10 K	80 K				
Radiation	3.4	-	30.0				
CWT	6.0	1.0	50.6				
Supports Cav1	0.4	2.1	8.0				
Supports Cav2	0.5	0.9	5.0				
FPC	4.8	4.6	46.4				
VHOM lines	1.4	2.6	13.0				
VHOM antennas	0.2	-	-				
HHOM lines	1.4	2.6	13.0				
HHOM antennas	0.5	-	-				
Pickup lines	2.0	-	10.6				
Pickup antennas	0.0	-	-				
Tuner	0.8	-	10.2				
Instrumentation	2.3	-	10.0				
He level sensor	0.4	-	0.8				
Cryo safety device	0.7	-	4.8				
Beam screen	1.4	-	-				
Beam impedance	-	-	-				
Cavity	20.0	-	-				
	46.2	13.8	202.4				

Thermal budget report for RFDICSee EDMS 2310389 - Thermal budget RFD cryomoduleCourtesy J.Swieszek – L.Giordanino

Transport Frame Design & Test

- 38mm drop test performed with a dummy CM
- ~80% shock isolation

Drop Test 1 - Vertical Acceleration vs. Time

Welding Developments at Daresbury

- Weld Procedure Specifications
- Sample qualification: dye & macroscopic

Science and Technology Facilities Council

Upper (Bi Phase) Cryoline

