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Introduction 
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•   The LHC machine plans to increase the instantaneous luminosity to 2 - 
5×1034 cm-2s-1 after its phase-I and phase-II upgrades and collects 300 – 
3000 fb-1 of data 

•   The luminosity upgrade is a big opportunity of higher physics potential  
•   Detector performance must be maintained to fully profit from the upgrade 
•   ATLAS plans to replace its forward muon detector for the phase-I upgrade 

(before 2018) to fix problems with  
•   L1 muon trigger rate: high fake muon rate, limited L1 muon pT 

resolution à high L1 trigger rate à prescale/higher thresholds à loss 
of interesting physics 

•   Muon precision tracking: performance deterioration due to high 
background and low detection efficiency 



Small wheel Big wheel 

New Small Wheel 

4	
  

•  Plan to replace the present SW detector (MDT + one station of TGC) with NSW 
(two stations of MM + two stations of sTGCs) 

•  sTGCs: (1) Kill fake trigger muons by requiring high quality IP-pointing 
segments in NSW; (2) measure muon incident angle at NSW with a resolution of 
1 mrad; (3) improve L1 muon pT resolution 

•  MM: precise muon hit position measurement and high muon detection efficiency  
•  Improve trigger (tracking) in the forward region 1.4<|ηdet|<2.4 (2.7) 

sTGC	
   sTGC	
  
MM	
  

µ	
  



sTGC structure 
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Copper/Graphite : 0.02mm 
Gas : 55%CO2 + 45%N-pentane 

100	
  
Strip and pad signals used for  

trigger purpose 



Pad trigger 
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Test beam results 
(CERN H8 Oct-Nov 2012) 
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Test beam setup  
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•  Performed a few beam tests to understand the sTGC spatial resolution 
and  pad timing performance as trigger devices, also to have better 
understanding of the ASD (VMM) chip designed by BNL 
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Fit Gaussian : 

ü Mean : Xi 

ü Residual12 = X2 – X1 

ü Spatial resolution ≈ 

σ(residual12) ÷ √2 

A single event display (two layers) 

Spatial resolution 



Spatial resolution 
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  resolution : 0° : 121.3 ÷ √2 ≈   86 µm 
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Resolutions @ different angles 

20° 
resolution = 142μm 

10° 
resolution = 103μm 

0° 
resolution = 86μm 

30° 
resolution = 169μm 
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Resolutions @ different angles 
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Pad timing study 
•  25ns bunch crossing :  

–  Fast signal 

–  a quite “narrow” distribution of signal time to get correct BC Tagger 

•  Aiming to have >97% events getting the correct BCId with 25ns bunch crossing 
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Pad timing distribution 
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25ns	
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Pad timing performance 

Typical : 91% at time gate = 25ns 
Best : 95% 
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Pad size study 
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Pad size study 

Peaking time = 25ns, Threshold = 400 counts, Gain=9mV/fC 



Detector simulation 
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Electric-field simulation 
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•  Electric field calculation is important for understanding the ionization, electron 
transportation, avalanche in gaseous detectors  

Electron drift lines(no diffusion) by Garfield (HV=3kV)	
  

Used	
  in	
  Garfield	
  
simulaZon	
  



•  Drift Velocity: simulation has good agreement with data 

•  Small longitudinal diffusion in the gas: < 30 µm in 1 mm drift path 

* Data points taken from D.Lazic et al., NIM A 410 (1998) 159 

Gas properties 
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•  Ionization of 180 
GeV µ- in 2.8 mm 
sTGC gas gap 

 
 
-  Electron-ion pairs per 

cluster: ~1.85 
-  Mean #. of clusters: ~25 
-  Total ionization: ~47 

electron ion pairs 
-  Mean energy deposition 

1.33 KeV 

IonizaZon	
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•  Free electrons drift from where 
clusters are produced 

•  Assumption: the avalanche 
initiated by the cluster nearest to 
the wire will give a signal large 
enough to pass the threshold 

•  take the minimum arrival (to 
wire) time as the signal time  

•  Convolute the time with a 
Gaussian fluctuation(σ=1.4ns) 
describing the electronics time 
jitter 

Timing information 
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•  Simulated time spectrum with different particle incident angles 

Timing information 

23	
  

Entries  3000
Mean    8.045
RMS     6.923

Arrival Time [ns]
-10 0 10 20 30 40 50 60 70 80

En
tr

ie
s/

1n
s

0

50

100

150

200

250
Entries  3000
Mean    8.045
RMS     6.923

 @ 3.1 kV°0

Entries  3000
Mean    7.982
RMS     6.535

Arrival Time [ns]
-10 0 10 20 30 40 50 60 70 80

En
tr

ie
s/

1n
s

0

50

100

150

200

250 Entries  3000
Mean    7.982
RMS     6.535

 @ 3.1 kV°5

Entries  3000
Mean    7.606
RMS     6.087

Arrival Time [ns]
-10 0 10 20 30 40 50 60 70 80

En
tr

ie
s/

1n
s

0

50

100

150

200

250 Entries  3000
Mean    7.606
RMS     6.087

 @ 3.1 kV°10



20 ns 
Ion	
  tail 

Signal on the wire  
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Induced	
  current	
  signal	
  

Work plan :  
•  Charge spread on the resistive layer 
•  Simulation of electronics response 
•  The final readout from electronics 
•  Compare with the signal read from 

oscilloscope  



Summary 
•  sTGC will be used as the muon trigger device in the forward region 

for ATLAS phase-I upgrade. 

•  It will provide high quality segment measurement in small wheel, and 
help reduce fake muons and improve L1 muon pT resolution.  

•  sTGC test beam results : 
ü  Spatial resolutions of 90~170µm observed depending on incident angle; 

ü  The same level of spatial resolution could be obtained with VMM1 chip; 

ü  For the pad time performance, about 91% events are within a 25ns time 
window on average, 95% at the best. 

•  Performs studies of electric field and gas properties of sTGC chamber, 
simulate the timing information and induced current signal on the 
wire. 
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Back up 
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Current Small Wheel     

28	
  

•  SW detector : eight layers 
of Monitored drift tube 
chambers (MDT) and one 
station of thin gap 
chambers (TGC) chamber 

•  MDT as precision tracking 
detector and TGC as 
trigger detectors 

•  instantaneous luminosity   ~ 2 - 5×1034 cm-2s-1  
•  Replace forward muon detector before 2018 to fix problems with : 
ü  L1 muon trigger rate: high fake muons observed, limited L1 muon pT (~20-30%) 

resolution  
ü  Muon precision tracking: performance deterioration due to high background and 

low detection efficiency. 



Calorimeter 
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The present L1 trigger algorithm is based on the segments only measured by the 
BW TGCs and with the assumption that the muons originate from the origin 
•  Many charged particles or slow neutrons produced in or after SW still produce 

segments in BW and mimic the trigger signal and not pointing to the origin	
  
•  BW segment angle measurement (~3 mrad) à worse L1 muon pT resolution 

(~30% at 25 GeV)  

Current Small Wheel     



New Small Wheel 
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•  replace the present SW detector with 
NSW (eight layers of MM detector and 
two stations of sTGC chambers) 

•  Kill fake trigger muons by requiring high 
quality IP pointing segments in NSW 

•  Help improve L1 muon pT resolution 
•  Improve trigger and tracking in the trigger 

1.5<|ηdet|<2.5 
	
  

Calorimeter 
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Toroid 



Simulation 
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Position resolution 
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angle QDC(µm) VMM(µm) 
Gain=3mV/fC 

VMM(µm) 
Gain=9mV/fC  

0° 86 68 127 

10° 103 127 153 

20° 142 158 180 

30° 169 144 -- 



Legend:      •  Excita,on	
  
•  Ioniza,on 

•  Simulation of charge production is important to understand gas gain fluctuation 
à determine the detector performance: efficiency, spatial resolution etc. 

•  The avalanche is simulated with a microscopic method: trace electrons at 
molecular level 

•  Gas gain fluctuation: Polya distribution  

θ=1.34 

Charge production 
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DAQ 
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