Scientific CCDs for DM and Neutrino detection

Javier Tiffenberg[†]

January 11, 2013

† Fermi National Laboratory

Goal: lower the energy threshold in Si detectors

Look for coherent (DM/ν) -nucleus interactions by measuring the ionization produced by the nuclear recoils

Goal: lower the energy threshold in Si detectors

Look for coherent (DM/ν) -nucleus interactions by measuring the ionization produced by the nuclear recoils

Detector

We use scientific CCDs from DECam

- 10x thicker than most CCDs (250 μ m)
 - \sim 1 gr per CCD
 - allows selection of limited diffusion events: self-shielding
- pixel size of 15 μ m
- \bullet CCDs cooled to -150 C to achieve RMS of 2 e^-
- Threshold of 40 eVee

10 scientific CCDs are installed in a low radiation package inside a copper box

Background measurement capabilities.

DAMIC: First run - technique demonstration @MINOS

DAMIC

DAMIC: Second Run - @Snolab

CONNIE

CONNIE

Event rate

For 10 grams: \sim 0.3 ν elastic scattering events per day

Scalability

simple & cheap to scale up

Lowering the noise, reaching the sub-electron level.

Summary

- ullet CCDs are a good candidate for detecting low energy $\nu/{\rm DM}$ events. The lack of mass is compensated by their low threshold.
- Scalable and compact.
- Neutron background is a big issue. Needs to develop shielding.
- Self-shielding capability for gammas by selecting limited diffusion events.
- Neutron and gamma detectors inside the dewar.
- Ongoing efforts by Fermilab and Chicago University to measure the quenching factor at low energies.
- DAMIC already installed and taking data @Snolab.
- CONNIE will be ready to ship in early 2013 and we expect to complete the installation at the Angra Nuclear Power Plant before June 2013.

BACK UP SLIDES

Shielding: preliminary design.

Quenching factor.

