

Tracking Detector Challenges

Observations "based" on lessons learned, perhaps the hard way.

Direct Experience

Friendly Spies, Talks, Rumors...beware!

P. "Cassandra" Collins, ICHEP 2002

Silicon for tracking: Large Systems

P. Collins "Future Detector Systems" ICHEP 2002

14

January 10, 2013

Fortunately, not true

Momentum Resolution

January 10, 2013

CPAD Workshop - Tracking Detectors S Nahn

January 10, 2013

CPAD Workshop - Tracking Detectors S Nahn

Overall, Excellent Performance

- Running Trackers
 - Operational fraction (100- ε_{dead}) ε_{dead} ~ 2-5%
 - Track and Vertex efficiencies (100- ε_{lost}) ε_{lost} ~ 0.1-0.5%
 - Momentum Resolution sub-percent level
 - No (publicized) catastrophes
- Retired Trackers
 - Fully functional for 5× expected lifetime in both years and dose (!?!)
- "Challenges" = what are the current/recent *common* threads between the various detectors

Potential Challenges (one possible, and possibly incomplete factorization)

From Physics

Signal to Noise

- Gets all the focus
- Physics dependence?

Multiple Scattering

• Thinner = better, but constraints vs infrastructure

Spatial resolution/Alignment

Push beyond ~ few μm?

Radiation Damage

- When do things "die"
- Acute damage!

• From Operations

Bandwidth/Occupancy

- Balance of efficiency and deadtime
- Implication on Pattern reco too

Robustness

Redundancy, Efficiency, Resiliency, Rapid Recovery

Power and DAQ paths

Meet specs w/minimal complexity, cost

Cooling/Environment

Avoid melting, condensation ...

Be a good neighbor

Biggest Bugaboo: Dull, drab infrastructure

- Temperature and Humidity Control
 - CDF: ISL Blocked lines, Added "baggy" late in game
 - CMS: Leaks in Cooling Plant, Adding "baggy" ...
- Physical Connections
 - CDF: Delicate electrical connections, Bad Crimping
 - CMS: Bad Crimping
 - ATLAS: Similar concerns with inner connections, cabling (A. Grillo, private communication)
- Power supply systems, monitoring
 - Treated as a necessary evil
- Majority of operations and planning today involve refurbishing the "boring" things

January 10, 2013

7

Fixing without access

- Detector is unreachable
- Emphasis put on redundancy paying off
 - Remotely configured detours for commands, data
 Lacking in Tevatron experiments (at least CDF)
- Much work on "curing symptoms" externally

 CMS, CDF making firmware/hardware robust
 against corruption, excessive occupancy
 - Everyone fast recovery time for intermittent problems

Wishlist: Realistic conditions

- Ingredients missing during Integration Tests
 - Interfaces: eg. Trigger, Event Building systems
 - Limits capability, Hides protocol misunderstandings
 - Statistics: Slice tests rely on homogeneity
 - Misses "worst offenders" which hold up DAQ
 - Rate: Cosmics don't come at 20 MHz
 - Need to test at rates commensurate with ASIC timescales
 - Environment: No B field, No Beam, No other detectors
- LHC vs. TeV: "Incident" silver lining
 - Extra time in situ to suss out problems

Resiliency

- Strive to make sure nothing goes wrong, what happens when it does?
 - Out of Spec by 2σ (Voltages, Clocks, Optical levels)
 - Cooling/Gas flow not adequate

ATLAS: VCSEL Tx, CiS Sensors

- **CDF COT:** Wire Aging
- How long will the detector last?
 - Chronic radiation damage well scrutinized
 - Monitoring archive needs to be reliable
 - What about acute radiation?
 - Dump a bunch of charge in your detector, what happens?

January 10, 2013

CPAD Workshop - Tracking Detectors S Nahn

Person power!

- LHC Exodus to analysis with the arrival of data
 Secondary exodus → Upgrades with detector running
- Few practice fields
 - 100% operational excludes development
 - "If it ain't broke, don't fix it" limits time for learning
 - No "playing" with precious detectors
- How to better recognize "hardware" contributions
 Often contrasted with "Physics"

Conclusions?

- State of the current/recent detectors is pretty good
 Producing the physics they were designed for
 - Little disparity between expectation and performance
- Challenges are dealing with the residual sources of inefficiency
 - Redressing mundane or marginal issues
 - Lessons for how to improve next time
- Is there something CPAD can do to help this? Detector Integration center? Promotion of Instrumentation Importance
 ...<your answer here>