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What Happens When Charged Particles Lose Energy in LAr?
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Charge response to ionization and the transport of charge

Observation of the motion of electrons in noble liquids is the primary means
of event tracking and calorimetry in TPCs. All of the processes that
contribute to the production and transport of electrons and ions are of
interest for the optimization of TPCs.
1. Specific ionization as a function of specific energy loss and electric
field especially at high energy loss (the recombination factor)
2. Diffusion of electrons (transverse & longitudinal) as a function of
electric field
3. Attachment cross sections (rate constants) of electrons for all
impurities
4. Mobility of positive ions (including the ions of impurities)
5. Optimization of transport properties with dopants, as has been done
for gaseous detectors
6. Development of structures and conditions for gain in noble liquids
7.Optimization of photocathodes as a high brightness source of
electrons in noble liquids
8. Analysis through Monte-Carlo simulations of optimization of signal
processing and detector performance.
9.Henry’s law constants for common impurities




Optical response to ionization and the transport of light

Development of optical detection of the scintillation (and Cerenkov) light
produced by ionizing radiation in noble liquids, using photomultipliers and
avalanche diodes or other solid state devices, with or without wavelength
shifters and light pipes. This detection is useful for marking the start of
electron drift for TPC z coordinate measurement, for particle identification,
and for background rejection. In particular, the ratio between the fast and
the slow component of the VUV scintillation light is strongly dependent on
the ionization density and can be used as a discriminating variable in dark-
matter searches.

1. Specific scintillation as a function of specific energy loss, electric
field, and impurities, especially at high energy loss, for both
scintillation components.

2. Absorption of scintillation light by impurities

3. Rayleigh scattering of scintillation light

4.Monte-Carlo simulation of optical response of detectors

5. Wavelength shifter coatings and dopants

6. Solid state detectors in cryogenic liquids

Program beginning at CSU to measure opticlcal properties



LAr Detector R&D/Prototyping in US
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Selected Properties of LAr

Transport properties: scintillation light absorption and electron diffusion

Light propagation in LAr Electron diffusion in LAr
MNet Photon Collection Efficiency wy and wjo Rayleigh Scattering Electron Energy in LAr: Data + Theory of Artazhev
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Electron Drift and Diffusion in LAr

Modified Cryofab Dewar — 9.46 1D, 24 Depth, 18.4 Liters @ Operating Depth
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Rayleigh Scattering as an Isotopic Random Walk

For an isotropic random walk in d-dimensional space with an
rms step size of <r?>, after N steps the PDF of the distance
from the origin approaches!

Exp[-dR? / (2(r*)N)] S(d) is the area
asN — oo
(27z<r2> N /d)2 of a d-sphere

Pu(R) ~ S(d)R°

For Rayleigh scattering, the steps are exponentially ! B. Hughes, Random

distributed, and the rms step size is Wal.ks and Random
Environments, Vol |

12
f [ Oxford,1995
<r2>1/2 :(J' rzExp[—r/iR]dr)/J‘EXp[_r/lR]drj - \/EXR (Oxfor )
0 0

In three dimensions, the mean distance from the origin is
(R)= 37N,

So the distance walked (path length) after N steps is

2
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Monte Carlo Calculations with Rayleigh Scattering

Summary of Results for Collection Efficiency in X Direction
for three absorption lengths
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Electron Attachment

aka Purity Requirements for LAr

a(y) = a(0) Exp[-y/(vy 7)]

Electron Attachment Rate Constants in Ar
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Need extremely high purity LAr to avoid charge attenuation along drift

See Andrews, et al., NIM A608 (2009) 251



Getting, and Keeping, High Purity Liquids

Impurity injection, transport, and removal

kCLEAN

Rate constant for each process implies a
differential equation
. Gas | | o
A n«(G) Solution of all eight coupled differential
’ T equations determines dynamic and steady-
kTRANSPL oesone{ To) state impurity concentration in LAr
Flow
TG i kDIFFUSE(TG)
Henry’s Law
Koot (Ter) koo (T, (Henry'slawl
kH(TGL) -
kL to G(TGL) kL to G(TGL)
Korruse(T0) i T At equilibrium, Henry’s law determines impurity
concentrations:
K (T.) C x(liq) = k, ,, X(gas)
DRSNS with k,, =0.0041 for an ideal solute in Ar
L Independent of where the solute is introduced (gas or
(L) Liquid liquid)

Not relevant for dynamic system.

For LAr cryostats, dominant process is Kpgsopp(T5)




Avoiding Contamination of Pure LAr

Water Desorption by FR4

Felative weight loss
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Fig. 3. Relative weight loss for 2 epoxy based PCBs at

different temperatures.

K. Weide-Zaage et al., Microelectronics Reliability 45 (2005) 1662

Desorption rate depends strongly on temperature
1. Keep sources of impurities in liquid or cold gas
2. Maintain large flow in gas to dominate diffusion
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Lesson: In the liquid, don’t care; in the gas, beware!




Charge and Light Production in Cold Supercritical Neon I

eBubble Cryostat g™ g\ \ -~ | Light k
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Optical Spectra of GEM Avalanches in Ne

At low H2 concentrations and high total pressure, a continuum emission extending into the
UV dominated the optical content of GEM avalanches.

Measured Spectra for Gem Avalanches in NE + X The emitting is presumed to be NeH"
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Light Gain in Ne+H2 and Model Predictions

* Charge Gain and Light Yield both depend on H, concentration,

but are relatively independent of temperature LightGain = Gainx LightYield = N—p
0
* High Light Yield is maximized by varying both pressure and H * *
concentration PIEEREn o NewH SN gn k]
NeH, > Ne +H, +e”
*10 photons/electron at maximum + +
p / N? +H, —> Nel-j2 ] Low [H,]
*A gas kinetic model can qualitatively predict the charge/light NeH, —» NeH +H" +e
production
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Optical Readout by EMCCD I

* The EMCCD image shows good spatial
resolution of GEM holes

* The cost of the optical readout can be
significantly lower than electronic readout for
large areas.

30Psi 60Psi

100Psi

- T 200 % e
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Resources

Noble Gas Detectors, Elena Aprile, Aleksey E. Bolotnikov, Alexander |I.
Bolozdynya, Tadayoshi Doke, John Wiley & Sons (2007)

Liquid State Electronics of Insulating Liquids, Werner F. Schmidt, CRC
Press (1997)

See LBNE docdb 4482 for a recent summary of LAr properties

LBNE Working Group on
LBNE FD/ND-SIM, Reconstruction, and charge/photon transport
Thomas R. Junk
Matthew Szydagis
Eric Church



