Machine Learning for Autonomous Accelerator Control and Phase Space Reconstruction

Ryan Roussel

AWA Now Workshop - 8/10/2023

rroussel@slac.stanford.edu

Overview

- Autonomous Accelerator Operations @ AWA
 - Bayesian Exploration
 - Automatic Emittance Characterization
- Phase Space Reconstructions using Neural Networks @ AWA
 - Reconstructions from Quadrupole Scans

Bayesian Algorithms For Accelerator Control

Acquisition function definition

Why?

- Extremely data efficient → build models from scratch
- Intrinsically incorporates measurement uncertainty → perfect for noisy accelerator operation

Characterization Before Optimization

To maximize optimization performance, we want to **understand our problem**

- Which parameters are critical to optimization?
- What regions of parameter space produce valid conditions (min. beam transition, etc.)?

Can we use BO to automatically "**learn**" about our objective?

Click button ----> GO!

Possible values of x1

Bayesian Exploration

Characterizing Photoinjector Emittance at AWA

- Able to characterize emittance dependance in ~70 measurements with no prior information
- Equivalent 4D grid scan uses ~1000 measurements
- 14x characterization speed-up

Determine beam emittance as a function of:

- 2 solenoids
- 2 quadrupoles

Automatic Emittance Measurements

Future Work: Bayesian Algorithm Execution (BAX)

Phase Space Reconstructions using Neural Networks

Quadrupole Scan @ AWA

Conventional analysis of measurements loses A LOT of beam information

Phase Space Reconstruction Challenges

Simple phase space distribution representations are **insufficient** to describe real beams w/ needed detail

General Accelerator R&D Program

Accelerator and Beam Physics Roadmap

DOE Accelerator Beam Physics Roadmap Workshop September 6–8, 2022

8, 2022

5 Grand Challenge Three

Beam Control: How do we control and diagnose the beam distribution at all scales from its macroscopic properties down to the level of individual particles?

Tomographic methods need many measurements, ~28 hrs. for 5D reconstruction

Phase Space Reconstruction Using Optimization

Machine Learning Based Beam Representations

Use a generative machine learning model to create arbitrary beam distributions

O(~1000) parameters of the neural network control the distribution of particles in 6D phase space Learn the NN parameters → learn the beam distribution

Differentiable Beam Physics Simulations

Differentiable sims keep track of derivative information during every calculation step.

Enables cheap gradient evaluations which enable optimization of >10k free parameters.

Allows us to extract information from the individual pixels of an image.

• •

Y

 $\partial Z \ \partial Z \ \partial \sigma_Z$ $\overline{\partial Y}$, $\overline{\partial K}$, $\overline{\partial K}$, ...

Z = f(Y; K)

K

= KDE(Z)ЭK AV

High Fidelity Phase Space Reconstructions

Roussel, Ryan, et al. PRL (2023)

Synthetic Example Reconstruction

6

(mrad)

-2

Reconstruction (training) time < 5 mins No prior training data needed!!

Experimental Demonstration @ AWA

AWA Reconstruction Results

See also: Seongyeol's talk tomorrow morning RE: flat beams Accurately predicts beam distributions outside the training set

Roussel, R, et al. PRL (2023)

Conclusions

 Major efforts in ML @ AWA as part of collaborations with SLAC and U. Chicago

Questions?

SLAC

- Auralee Edelen
- Chris Mayes
- Daniel Ratner

U. Chicago

- Juan Pablo Gonzalez-Aguilera

Argonne Wakefield Accelerator

- Seongyeol Kim
- John Power
- Eric Wisniewski
- Wanming Liu

Thanks to the team!

