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Overview

Autonomous Accelerator Operations @ AWA

- Bayesian Exploration
- Automatic Emittance Characterization
Phase Space Reconstructions using Neural Networks @ AWA

- Reconstructions from Quadrupole Scans



Bayesian Algorithms For Accelerator Control
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Create a computational potential future Pick the point that
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Why?

- Extremely data efficient - build
models from scratch

- Intrinsically incorporates
measurement uncertainty - perfect

- inpu, ° T T for noisy accelerator operation
Gaussian Process Model Acquisition function definition 3
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Characterization Before Optimization

To maximize optimization performance,

we want to understand our problem Start here

- Which parameters are critical to
optimization?

- What regions of parameter space
produce valid conditions (min. beam
transition, etc.)?

Possible values of x2

Can we use BO to automatically “learn’
about our objective?
Invalid

Possible values of x1
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Bayesian Exploration
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Characterizing Photoinjector Emittance at AWA
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Determine beam emittance
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- Equivalent 4D grid scan uses ~1000
measurements
- 14x characterization speed-up Qb Qe
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Automatic Emittance Measurements
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Future Work: Bayesian Algorithm Execution (BAX)

Our goal:
Use virtual measurements to 5
optimize beam parameters |5
(alignment, emittance, etc.) | &
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Predict beam emittance as a
function of tuning config.
(with uncertainty)
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Predict optimal tuning
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The BAX algorithm chooses beam size
measurements that reduce uncertainty in x*

without measuring emittance directly 2>
20x speed up for LCLS Miskovich, et. al., arXiv:2209.04587  §




Phase Space Reconstructions using Neural Networks



Quadrupole Scan @ AWA
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Conventional analysis of measurements loses A LOT of beam information
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Phase Space Reconstruction Challenges
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Simple phase space distribution representations are
insufficient to describe real beams w/ needed detail

General Accelerator R&D Program

Accelerator and Beam
Physics Roadmap

DOE Accelerator Beam Physics Roadmap Workshop
-8 2022 i sha EEE
September 6-8, 20. s e e

|5 Grand Challenge Three |

Beam Control: How do we control and diagnose the beam distribution at all scales—
| from its macroscopic properties down to the level of individual particles?

Advanced tomographic methods: sk o starows g marmeere e (2) ' Vi |"-'-2'.:::':;-.~.
* Maximum entropy tomography (MENT) (1) St aadrupoles o bien desired ransvese ‘ !
» Algebraic reconstruction (ART, SART)
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ALt Reconstruct 4D transverse phase space O
N (x, X', y, y') for each longitudinal slice.

o

Reconstruct 3D charge-density distribution (x, y, t)
Use all 4D reconstructions to obtain 5D of the bunch for all (6, 8/) combinations.
charge-density distribution (x, X', y, ', t).

Hock K. and Ibison M., JINST, 2013 S. Jaster-Merz et. al. (IPAC 2023) | screen station ) quadrupcle @ PolariX TDS

Tomographic methods need many measurements, ~28 hrs. for 5D reconstruction
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Phase Space Reconstruction Using Optimization

Physics Prediction
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Simple quad scan:
* Beam distribution is assumed to be elliptical.

\
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» Fully parametrized by g, Oxp,, Op.p,
» Assume linear transport of elliptical beam

/

+ Beam sizes from screen downstream

/

+ Error of the quadratic fit

. iverging
beam beam vaist  beam
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Result:
+ Elliptical 2D phase space consistent with beam
size measurements.




Machine Learning Based Beam Representations

Use a generative machine learning model to create arbitrary beam distributions

Neural Network
Parameterized Transform Particle Distribution

Randomly Generated
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Samples

X ~ N(0,1)

o‘.% .’ '

O(~1000) parameters of the neural network control the distribution of

particles in 6D phase space
Learn the NN parameters - learn the beam distribution
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Differentiable Beam Physics Simulations

Differentiable sims keep
track of derivative information
during every calculation step.

Enables cheap gradient
evaluations which enable
optimization of >10k free
parameters.

Allows us to extract
information from the

individual pixels of an image.
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High Fidelity Phase Space Reconstructions

Neural Network
Parameterized Transform
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Experimental Screen Images

Roussel, Ryan, et al. PRL (2023)
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Synthetic Example Reconstruction
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Experimental Demonstration @ AWA
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AWA Reconstruction Results
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See also: Seongyeol’s talk Accurately predicts beam distributions Roussel, R, etal. PRL (2029)
tomorrow morning RE: flat beams outside the training set 18



Conclusions

- Major efforts in ML @ AWA as part of collaborations
with SLAC and U. Chicago
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Questions?

SLAC

- Auralee Edelen

- Chris Mayes

- Daniel Ratner

U. Chicago

- Juan Pablo Gonzalez-Aguilera
Argonne Wakefield Accelerator
- Seongyeol Kim

- John Power

- Eric Wisniewski

- Wanming Liu

Thanks to the team!
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