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Overview

- Autonomous Accelerator Operations @ AWA

- Bayesian Exploration

- Automatic Emittance Characterization

- Phase Space Reconstructions using Neural Networks @ AWA

- Reconstructions from Quadrupole Scans
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Bayesian Algorithms For Accelerator Control

Create a computational 

model of the system

Pick the point that 

maximizes value

Determine the value of 

potential future 

measurements

Gaussian Process Model Acquisition function definition

Why?

- Extremely data efficient → build 

models from scratch

- Intrinsically incorporates 

measurement uncertainty → perfect 

for noisy accelerator operation
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Characterization Before Optimization

To maximize optimization performance, 

we want to understand our problem

- Which parameters are critical to 

optimization?

- What regions of parameter space 

produce valid conditions (min. beam 

transition, etc.)?

Can we use BO to automatically “learn” 

about our objective?
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Bayesian Exploration

Roussel et. Al. Nat. Comm. 2021Roussel et. Al. Nat. Comm. 2021Roussel et. Al. Nat. Comm. 2021
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Characterizing Photoinjector Emittance at AWA

Determine beam emittance

as a function of:

• 2 solenoids

• 2 quadrupoles

Roussel et. Al. Nat. Comm. 2021

- Able to characterize emittance 

dependance in ~70 measurements 

with no prior information

- Equivalent 4D grid scan uses ~1000 

measurements

- 14x characterization speed-up
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Automatic Emittance Measurements

Respects bounding box penalty

2nd order Bayesian fits to data

• Respects physics

constraints

• Properly calibrated

uncertainty

estimates
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Future Work: Bayesian Algorithm Execution (BAX)
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Beam size model

Predict beam emittance as a 

function of tuning config.

(with uncertainty)

Predict optimal tuning 

config. (with uncertainty)  

Miskovich, et. al., arXiv:2209.04587

The BAX algorithm chooses beam size 

measurements that reduce uncertainty in 𝒙∗

without measuring emittance directly →

20x speed up for LCLS

Our goal:

Use virtual measurements to 

optimize beam parameters 

(alignment, emittance, etc.)
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Phase Space Reconstructions using Neural Networks
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Quadrupole Scan @ AWA

Drive beamline

Conventional analysis of measurements loses A LOT of beam information
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Phase Space Reconstruction Challenges

Simple phase space distribution representations are 

insufficient to describe real beams w/ needed detail

LCLS

Tomographic methods need many measurements, ~28 hrs. for 5D reconstruction



Phase Space Reconstruction Using Optimization
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Machine Learning Based Beam Representations

Use a generative machine learning model to create arbitrary beam distributions

O(~1000) parameters of the neural network control the distribution of 

particles in 6D phase space
Learn the NN parameters → learn the beam distribution
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Differentiable Beam Physics Simulations

Differentiable sims keep 

track of derivative information 

during every calculation step.

Enables cheap gradient 

evaluations which enable 

optimization of >10k free 

parameters.
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Allows us to extract 

information from the 

individual pixels of an image.
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High Fidelity Phase Space Reconstructions

Roussel, Ryan, et al. PRL (2023)
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Synthetic Example Reconstruction

Accurate 4D reconstructions using 10 measurements!

Reconstruction (training) time < 5 mins 

No prior training data needed!!

Screen imagesBeamline

Synthetic 

beam

Synthetic 

beam

Simulated

images

Simulated

images
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Experimental Demonstration @ AWA

Drive beamline
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AWA Reconstruction Results

Roussel, R, et al. PRL (2023)Accurately predicts beam distributions 

outside the training set

Reproduces detailed beam features

See also: Seongyeol’s talk 

tomorrow morning RE: flat beams
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Conclusions

- Major efforts in ML @ AWA as part of collaborations 

with SLAC and U. Chicago
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Questions?

Thanks to the team!

SLAC

- Auralee Edelen

- Chris Mayes

- Daniel Ratner

U. Chicago

- Juan Pablo Gonzalez-Aguilera

Argonne Wakefield Accelerator

- Seongyeol Kim

- John Power

- Eric Wisniewski

- Wanming Liu
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