

ETH zürich

Sebastian Heinekamp, A. Adelmann

Bayesian Model Calibration

AWANOW, 11th August 2023

Contact: sebastian.heinekamp@psi.ch

Overview

1. Introduction

Bayesian inference Application to AWA

2. Model Calibration

Bayesian Calibration Quantities of Interest and Measurement Data

3. Surrogates in Bayesian Modelling

Gaussian Processes ML Surrogates

4. Towards Automated Experimental Design

5. Plans at AWA

Experimental Training Data Goals

Bayes' Theorem $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$

Goal: Obtain full distribution $P(\theta|D)$ not just $\mathbb{E}[\theta|D]$ or θ_{max}

Application to AWA

Exact profile of laser in the AWA electron gun

Parameter θ e.g.:

 t_R : intensity build up from 10 - 90% t_l : pulse length at 50% maximum

Sebastian Heinekamp, A. Adelmann (LSM, PSI)

Bayes Model Calibration

Distribution e.g. of the time rise t_R and pulse length t_l can be used to

- improve simulation predictions
- calculate uncertainties
- refine the experimental setup

1. Introduction

Bayesian inference Application to AWA

2. Model Calibration

Bayesian Calibration Quantities of Interest and Measurement Data

3. Surrogates in Bayesian Modelling

Gaussian Processe ML Surrogates

4. Towards Automated Experimental Design

5. Plans at AWA

Experimental Training Data Goals

Statistical Model

$$z_i = \zeta(\xi_i) + \epsilon_i = \rho \eta(x_i, \theta) + \delta(x_i) + \epsilon_i$$

$\zeta(\xi_i)$	Real world experiment		
$\eta(\mathbf{x}_i, \theta)$	simulation	θ	parameter
$\delta(\mathbf{x}_i)$	Code inadequacy	Zi	output
ρ	regression coefficient	Xi	input
ϵ	measurement error		

Quantities of Interest and Measurement Data

i.

$$z_i = \zeta(\xi_i) + \epsilon_i = \rho \eta(\mathbf{x}_i, \theta) + \delta(\mathbf{x}_i) + \epsilon_i$$

Quantities of Interest

Experimental Inputs	Parameters	Measurement Outputs	
× / ξ	heta	Z	
known; can be changed	distribution of interest	can be measured	
ILS, IBF, Φ_{Gun} , SigXY,	trise t_r , pulse length t_l ,	Energy, ΔE , σ_x , σ_y ,	

÷.

Types of Variables in Calibration Process

Measurement DataSimulation Data (OPAL [2])very expensive, little controlmore control, less expensive $N \approx 20 - 100$ $N \approx 1000 - 10000$

1. Introduction

Bayesian inference Application to AWA

2. Model Calibration

Bayesian Calibration Quantities of Interest and Measurement Data

3. Surrogates in Bayesian Modelling Gaussian Processes ML Surrogates

4. Towards Automated Experimental Design

5. Plans at AWA

Experimental Training Data Goals

Surrogates in Bayesian Modelling

$$z_i = \zeta(\xi_i) + \epsilon_i = \rho \eta(x_i, \theta) + \delta(x_i) + \epsilon_i$$

Need functional representations or surrogates for

Simulation $\eta(\mathbf{x}_i, \theta)$: from simulation data, independent of measurements

Code inadequacy $\delta(x_i)$: from simulation data and measurements

Error
$$\epsilon$$
: ~ $\mathcal{N}(\mu, \sigma)$

PAUL SCHERRER INSTITUT

Gaussian Processes [4]

Default surrogate:

 $f(heta) \sim GP(m(heta), cov(heta, heta'))$

 $m(\theta)$ - mean function $cov(\theta, \theta')$ - covariance function

Gaussian Process with Variance [3]

Gaussian Process

Advantage:

Variance at each point

Good for few data points

little training (per-calculation) required

Challenge:

Inversion of kernel matrix grows $\mathcal{O}(N^3)$

Other ML Surrogates Advantage:

Fast evaluation

Already in some cases exist i.e. Bellotti et al. [5]

All of ML tools available

Challenge:

Variance not available

Alternatives to Plain GP

Neural Networks

Learn variance with a second NN

Bayesian Neural Net

Mix using transfer learning

Advanced GP

Deep GP

Bayes Committee

Subset GP

These surrogates promise to allow for higher dimensional models and make use of more data

1. Introduction

Bayesian inference Application to AWA

2. Model Calibration

Bayesian Calibration Quantities of Interest and Measurement Data

3. Surrogates in Bayesian Modelling

Gaussian Processes ML Surrogates

4. Towards Automated Experimental Design

5. Plans at AWA

Experimental Training Data Goals

Apart from the mentioned use in prediction improvement:

a high dimensional model with inferred parameter distribution

use Bayesian Optimization for experimental design

Bayesian Optimisation [6]

1. Introduction

Bayesian inference Application to AWA

2. Model Calibration

Bayesian Calibration Quantities of Interest and Measurement Data

3. Surrogates in Bayesian Modelling

Gaussian Processes ML Surrogates

4. Towards Automated Experimental Design

5. Plans at AWA

Experimental Training Data Goals

Start of 2024:

Beam time at AWA to collect experimental data to train surrogate models and calibrate OPAL for AWA electron gun

Increase the model dimensionality in close to real time calibration using alternative surrogates

Use a high-dimensional Bayesian Model of AWA for experimental design

Thank you for your attention.

Questions?

References

- Marc C. Kennedy and Anthony O'Hagan. Bayesian calibration of computer models. 63(3):425–464.
- [2] Andreas Adelmann, Pedro Calvo, Matthias Frey, Achim Gsell, Uldis Locans, Christof Metzger-Kraus, Nicole Neveu, Chris Rogers, Steve Russell, Suzanne Sheehy, Jochem Snuverink, and Daniel Winklehner. OPAL a Versatile Tool for Charged Particle Accelerator Simulations.
- [3] Florent Leclercq. Bayesian optimization for likelihood-free cosmological inference. 98(6):063511.
- [4] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press.
- [5] Renato Bellotti, Romana Boiger, and Andreas Adelmann. Fast, Efficient and Flexible Particle Accelerator Optimisation Using Densely Connected and Invertible Neural Networks. 12(9):351.
- [6] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Freitas N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. 104(1):148–175.

Extra Slides

Posterior probability using Gaussian Process

Bayes' Theorem

$$\mathsf{P}(heta|\mathsf{D}) = rac{\mathsf{P}(\mathsf{D}| heta)\mathsf{P}(heta)}{\mathsf{P}(\mathsf{D})}$$

Posterior \propto Prior \times Likelihood

 $p(\theta,\beta,\phi|d) \propto p(\theta)p(\phi)|V_d(\theta)|^{-\frac{1}{2}}exp[-\frac{1}{2}(d-m_d(\theta))^{T}V_d(\theta)(d-m_d(\theta))]$