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Bayesian Inference vs Parameter Estimation

Bayes’ Theorem

P(θ|D) =
P(D|θ)P(θ)

P(D)

Goal:
Obtain full distribution
P(θ|D)
not just E[θ|D] or θmax
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Application to AWA

Exact profile of laser in the AWA electron gun

Parameter θ e.g.:

Profile of laser

tR : intensity build up from 10 - 90%
tl : pulse length at 50% maximum

Electron Gun
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Application to AWA

Distribution e.g. of the time rise tR and pulse length tl can be
used to

• improve simulation predictions

• calculate uncertainties

• refine the experimental setup
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Bayesian Model Calibration [1]

Statistical Model

zi = ζ(ξi) + ϵi = ρη(xi , θ) + δ(xi) + ϵi

ζ(ξi) Real world experiment
η(xi , θ) simulation
δ(xi) Code inadequacy
ρ regression coefficient
ϵ measurement error

θ parameter
zi output
xi input
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Quantities of Interest and Measurement Data

zi = ζ(ξi) + ϵi = ρη(xi , θ) + δ(xi) + ϵi

Quantities of Interest

Experimental Inputs Parameters Measurement Outputs

x / ξ θ z

known; can be changed distribution of interest can be measured

ILS, IBF, ΦGun, SigXY, ... trise tr , pulse length tl , ... Energy, ∆E, σx , σy , ...

Types of Variables in Calibration Process

Measurement Data Simulation Data (OPAL [2])
very expensive, little control more control, less expensive

N ≈ 20− 100 N ≈ 1000− 10000
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Surrogates in Bayesian Modelling

zi = ζ(ξi) + ϵi = ρη(xi , θ) + δ(xi) + ϵi

Need functional representations or surrogates for

Simulation η(xi , θ): from simulation data, independent of
measurements

Code inadequacy δ(xi): from simulation data and
measurements

Error ϵ: ∼ N (µ, σ)
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Gaussian Processes [4]

Default surrogate:

f (θ) ∼ GP(m(θ), cov(θ, θ′))

m(θ) - mean function
cov(θ, θ′) - covariance function

Gaussian Process with Variance [3]
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GP vs other Surrogates

Gaussian Process
Advantage:

Variance at each point

Good for few data points

little training
(per-calculation) required

Challenge:

Inversion of kernel matrix
grows O(N3)

Other ML Surrogates
Advantage:

Fast evaluation

Already in some cases
exist i.e. Bellotti et al. [5]

All of ML tools available

Challenge:

Variance not available
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Alternatives to Plain GP

Neural Networks

Learn variance with a
second NN

Bayesian Neural Net

Mix using transfer learning

Advanced GP

Deep GP

Bayes Committee

Subset GP

These surrogates promise to allow for higher dimensional
models and make use of more data
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Towards Automated Experimental Design

Apart from the mentioned use
in prediction improvement:

a high dimensional model
with inferred parameter
distribution

use Bayesian Optimization
for experimental design

Bayesian Optimisation [6]
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Experimental Training Data

Start of 2024:

Beam time at AWA

to collect experimental data

to train surrogate models

and calibrate OPAL for AWA electron gun
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Goals

Increase the model dimensionality in close to real time
calibration using alternative surrogates

Use a high-dimensional Bayesian Model of AWA for
experimental design
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Thank you for your attention.

Questions?
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Posterior KOH Probability

Posterior probability using Gaussian Process

Bayes’ Theorem

P(θ|D) =
P(D|θ)P(θ)

P(D)

Posterior ∝ Prior × Likelihood

p(θ, β, ϕ|d) ∝ p(θ)p(ϕ)|Vd(θ)|−
1
2 exp[− 1

2 (d −md(θ))
TVd(θ)(d −md(θ))]
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