#### LBNL LLRF Upgrade for the AWA facility

Larry Doolittle

representing the LBNL team

2023-08-10

# Origin

- AWA has a working LLRF system
  - ▶ 5 (+) cavities at 1300 MHz
  - 10  $\mu$ s pulsed klystrons, 10 Hz
  - difficult-to-understand drift/jitter behavior
- LBNL has deployed high-precision LLRF systems worldwide
  - Most recently at SLAC: 1300 MHz CW
  - Includes experience with drift-compensated phase distribution
- Maybe LBNL can help improve AWA!
  - Hardware
  - Software
  - People!

This talk will describe status of LBNL's contribution to AWA LLRF, still very much in-progress, and also ramble some about LLRF technology in general.

## Existing, working AWA RF system



1300 MHz Master Oscillator, 10 MHz IF, "obsolete" hardware

#### Deployed at AWA



#### Deployed at AWA





Demonstrated very high dynamic range, low drift, low crosstalk

- 1300 MHz carrier, variants at other frequencies including 3900 MHz
- -150 dBrad<sup>2</sup>/Hz white noise floor
- -110 dBrad<sup>2</sup>/Hz @ 1 Hz 1/f noise
- 80 to 120 dB isolation between channels
- about 30 MHz RF bandwidth

Unusual Split-LO design bypasses usual compromises in choosing IF

- Low 20 MHz IF for receiver reduces crosstalk & sensitivity to ADC clock jitter
- High 145 MHz IF for transmitter places less stringent requirements on output sideband-select filter
- Circumvents usual problems with isolation between drive & input IF

#### Not a new architecture!

Superheterodyne Receiver

- Invented by U.S. engineer Edwin Armstrong in 1918
- Overcame serious limitations of triode tubes of the day; their gain at 75 kHz IF was much higher than at 2 MHz RF

"Superheterodyne receivers have essentially replaced all previous receiver designs." - Wikipedia



Not counting the ADCs, the RF architecture of both the existing and upgrade LLRF systems would be instantly clear to Armstrong in 1918.



## LBNL DSP

LBNL has been building experience, capabilities, and a code base for accelerator RF DSP for over two decades. Filtering, DDS, up- and down-conversion, PI feedback loops, etc.

Mostly vendor-neutral, synthesizable, regression-tested Verilog HDL published on github under Open Source (BSD) license:

https://github.com/BerkeleyLab/Bedrock

| DSP | "Real" analog                                                         |
|-----|-----------------------------------------------------------------------|
| yes | yes                                                                   |
| no  | yes                                                                   |
| no  | yes                                                                   |
| no  | yes                                                                   |
| yes | yes                                                                   |
| yes | yes                                                                   |
| no  | yes                                                                   |
| no  | yes                                                                   |
| no  | yes                                                                   |
| yes | yes                                                                   |
| yes | yes                                                                   |
| yes | no                                                                    |
|     | DSP<br>yes<br>no<br>no<br>yes<br>yes<br>no<br>no<br>yes<br>yes<br>yes |

#### FPGA DSP as an analog component

## Short-pulse RF

Pulsed RF normally means only shot-to-shot feedback

 $10\,\mu \rm{s}$  is too short for realistic intra-pulse feedback

People do attempt it, but you need a lot of motivation to address difficult issues with latency and calibration

Most of the attention in LBNL's recent LLRF DSP development has been on narrow-band CW SRF cavities. But the capabilities are flexible and do include pulsed/triggered modes.

Triggered short-pulse waveforms have been captured at AWA.

Refer to Fermi@ELETTRA for an example of a pulsed RF system using LBNL's technology for phase stabilization.

### Microphonics and other disturbances

Pulsed RF normally means only shot-to-shot feedback

 $10\,\text{Hz}$  repetition rate means disturbances in the audio band are heavily under-sampled.

Very different from CW systems that can fully self-diagnose audio



## LBNL Hardware and Software

#### Traditional downconverter-ADC-FPGA stack, 20 MHz IF

#### FPGA connects directly to EPICS server over Gigabit Ethernet



EPICS server and UI prototyping and bench-testing (downconverter not included)

#### **Experimental Directions**

Title says "upgrade" but that's not a foregone conclusion

- LBNL system starts just as added diagnostics: "witness mode"
  - More evidence typically leads to more understanding
- Capability does exist to drive the system
- Has the flexibility to incorporate drift-compensating RF techniques



### Conclusions

Good opportunity for collaboration and building on DOE lab's strengths

## Thank You

LBNL team: Qiang Du, Gang Huang, Shreeharshini Murthy, Lucas Russo, Keith Penney

Special thanks to Derun Li and BACI, who provided a lot of drive for this project