

MACHINE-LEARNING & UNCONVENTIONAL APPROACHES TO EFFECTIVE FIELD THEORIES AT THE LHC

R. Schöfbeck (HEPHY Vienna, FNAL), Sept. 8th, 2023, Fermilab Wine and Cheese Seminar

A LONG ROAD

[Phil. Trans. R. Soc. A 373: 20140037]

- Early LHC physics goals (1984!)
 - origin of electroweak symmetry breaking & SUSY
 - discover Higgs boson via gluon-induced top loop
 - top quark discovery (1995) in resonant production
- LHC no-loose theorem: $W_L W_L \rightarrow W_L W_L$
 - resonant Higgs \lesssim 1.2 TeV or strongly interacting BSM
- ATLAS/CMS (2012) Higgs boson discovery (125 GeV)
 - We understand *something* about the TeV scale
- What about other resonances?

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2022									$\sqrt{s} = 13$ l				
	Model	Si	ignature	e ∫2	<i>dt</i> [fb ⁻	']	Mass limit						
Inclusive Searches	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_{1}^{0}$	0 <i>e</i> ,μ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	 <i>q̃</i> [1×, 8× Degen.] <i>q̃</i> [8× Degen.] 		• N	lo tell	-tale si	gnals	from model-dep	pendent searches
	$\tilde{g}\tilde{g}, \tilde{g} { ightarrow} q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ĩ5 ĩ5			• pt	ush mas	s scale	into the multi-Te	V regime
	$ \tilde{g}\tilde{g}, \ \tilde{g} \to q\bar{q}W\tilde{\chi}_1^0 \tilde{g}\tilde{g}, \ \tilde{g} \to q\bar{q}(\ell\ell)\tilde{\chi}_1^0 \tilde{\chi}_1^0 $	1 e, μ 2-6 jets 139 $ee, \mu\mu$ 2 jets E_T^{miss} 139 0 e, μ 7.11 jets ET 120			139 139	ës ës		 we chart the TeV scale using SUSY models 					
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\chi_1^\circ$	0 <i>e</i> ,μ SS <i>e</i> ,μ	6 jets	E_T^{mbs}	139	g g			_				
	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	E_T^{miss}	79.8 139	150 150		• [-	low ca	an we			
	$ ilde{b}_1 ilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 b	$E_T^{\rm miss}$	139	${ar b_1\ ar b_1\ ar b_1}$			• ch	hart the	TeV sca	ales using symme	etries
3 rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> ,μ 2 τ	6 <i>b</i> 2 <i>b</i>	E_T^{miss} E_T^{miss}	139 139	$ ilde{b}_1$ Forbidden $ ilde{b}_1$			• ho	ow to us	e ML t	o squeeze the dat	ta "optimally"
	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to W b \tilde{\chi}_1^0 $	0-1 e,μ 1 e,μ	≥ 1 jet 3 jets/1 b	E_T^{miss} E_T^{miss}	139 139	\tilde{t}_1 \tilde{t}_1	Forbidder						
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \to \tilde{\tau}_1 bv, \tilde{\tau}_1 \to \tau \tilde{G}$	1-2 <i>τ</i>	2 jets/1 b	E_T^{miss}	139	\tilde{t}_1	10,0,0,000	Forbidde	en	1.4		$m(\tilde{\tau}_1)=800 \text{ GeV}$	2108.07665
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e,μ 0 e,μ	2 c mono-jet	$E_T^{\rm miss}$ $E_T^{\rm miss}$	36.1 139	\tilde{t}_1	0	.55	0.85			$\mathfrak{m}(\tilde{\chi}_1^0)=0 \text{ GeV}$ $\mathfrak{m}(\tilde{\iota}_1,\tilde{c})$ - $\mathfrak{m}(\tilde{\chi}_1^0)=5 \text{ GeV}$	1805.01649 2102.10874
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	1-2 e,μ 3 e,μ	1-4 <i>b</i> 1 <i>b</i>	E_T^{miss} E_T^{miss}	139 139	\tilde{t}_1 \tilde{t}_2	Forbidden		0.067-1. 0.86	.18	$m(\tilde{\chi}_1^c)$	$m(\tilde{\chi}_{2}^{0})=500 \text{ GeV}$)=360 GeV, $m(\tilde{r}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$	2006.05880 2006.05880
~	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	139			0.66			2 1 1 4 1 4 1 6 C	Pure Wino Pure higgsino	2201.02472 2201.02472
live	Stable \tilde{g} R-hadron	pixel dE/dx		$E_T^{\rm miss}$	139	ĝ					2.05		CERN-EP-2022-029
I-Jd-	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	pixel dE/dx		E_T^{miss}	139	\tilde{g} [$\tau(\tilde{g})$ =10 ns]					2.2	$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	CERN-EP-2022-029
Pa pa	$\ell\ell, \ell {\rightarrow} \ell G$	Displ. lep		$E_T^{\rm miss}$	139	$\hat{e}, \hat{\mu}$ $\tilde{\tau}$	0.34	0.7				$\tau(\ell) = 0.1 \text{ ns}$ $\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812 2011.07812
		pixel dE/dx		$E_T^{\rm miss}$	139	Ť	0.36		_			$ au(\tilde{\ell}) = 10 \text{ ns}$	CERN-EP-2022-029
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e,µ	1		139	$\tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0$ [BR($Z\tau$)=1, BR(Ze)=1]		0.625	1.05			Pure Wino	2011.10543
	$\chi_1^+\chi_1^-/\chi_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e, µ	0 jets	$E_T^{\rm minss}$	139	$\chi_1^{\perp}/\chi_2^{\circ} [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$			0.95	1.55	10	$m(\mathcal{X}_1) = 200 \text{ GeV}$	2103.11684
1	$gg, g \to qq\chi_1, \chi_1 \to qqq$ $\tilde{x}, \tilde{x} \to \tilde{x}^0, \tilde{y}^0, dh$	-	Multiple	b	36.1	$g [m(\mathcal{X}_1)=200 \text{ GeV}, 1100 \text{ GeV}]$ $\tilde{t} [\mathcal{X}'' = 2e-4, 1e-2]$	0	55	1.05	1.3	1.9	$m(\tilde{v}^0)$ 200 GeV bine like	1804.03568 ATLAS-CONE-2018-003
P	$\begin{array}{cccc} II, I \rightarrow \mathcal{U}_1, \mathcal{X}_1 \rightarrow IDS \\ \tilde{II}, \tilde{I} \rightarrow \tilde{II} \tilde{Y}^{\pm}, \tilde{Y}^{\pm}_{\pm} \rightarrow bbs \end{array}$		> 4h		139	7	Forbidder	1	0.95			$m(\tilde{x}_1) = 200 \text{ GeV}, \text{ bind-like}$ $m(\tilde{\chi}_1^{\pm}) = 500 \text{ GeV}$	2010.01015
E	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$		2 jets + 2 b		36.7	\tilde{t}_1 [qq, bs]	0.42	0.61	0100				1710.07171
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 <i>e</i> ,μ 1 μ	2 <i>b</i> DV		36.1 136	$\tilde{t}_1 \\ \tilde{t}_1 $ [1e-10< λ'_{23k} <1e-8, 3e-10<	: λ'_{23k} <3e-9]		1.0	0.4-1.45 1.6		$\begin{array}{l} BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\% \\ BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1 \end{array}$	1710.05544 2003.11956
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^+ \rightarrow bbs$	1-2 <i>e</i> , µ	≥6 jets		139	$\tilde{\chi}_{1}^{0}$ 0.2	-0.32					Pure higgsino	2106.09609
Only a	a selection of the available mas	s limits on r	new states	s or	1	0^{-1}			1			Mass scale [TeV]	
simpl	ified models, c.f. refs. for the as	ssumptions	made.										

ATLAS Preliminary

[all summary plots CMS and ATLAS]

A CONDITIONAL SEQUENCE

adapted from <a>arXiv:2211.01421

A CONDITIONAL SEQUENCE

adapted from arXiv:2211.01421

DEEPTAU: τ IDENTIFICATION IN CMS

JINST 17 (2022) P07023

• Inputs:

- High-level cand-features (DNN)
- *Feature maps of constituents* on two grids, 106k inputs
- Convolutional layers
 - Read out particles on grid
 - Exploiting translation symmetry
 - fed into subsequent DNNs
- training: 1.1M parameters
 140M τ, 690 hrs
- Result: Factor of two in background suppression from using constituent-level inputs

- Make low-level inputs approachable via symmetries
- Similarly, all other taggers: RNNs, graphNNs, transformers, ...
 - ATLAS τ ID [<u>using RNNs</u>], and constituent based [<u>top taggers</u>] using PF flow networks
 - CMS: [<u>DeepJet</u>] for g/c/b/uds/leptons identification, and [<u>DeepAK8</u>] for t/W/Z/H
- What about theory landscape?

GOING "LOW-LEVEL" IN THEORY LANDSCAPE

Sketch from F. Riva

THE STANDARD MODEL EFFECTIVE FIELD THEORY

• Organize the pieces in terms of mass dimension:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM}^{(4)} + \sum rac{C_x}{\Lambda^2} O_{6,x} + h.c.$$

- 1. Keep SM symmetries
 - $SU(3)_{c} \otimes SU(2)_{L} \otimes U(1)$
- 2. Keep particle content
- 3. scale hierarchy
- 59 operators affect all SM predictions

Predicting rates from "squared" diagrams:

- Quite exceptional simplification!
- Being general & keeping SM symmetries: ask big questions!

NEW FORCES INVOLVING TOP QUARKS?

- Extended scalar sectors "two Higgs doublet models" from SUSY or other BSM physics [review]
- High-mass force carriers similar to the W and Z bosons : Z' and W' bosons
 [review]
- Massive "chiral" colored force carriers, otherwise similar to the gluon: axigluons [<u>Mimasu et.al.</u>]
- Composite sector whose bound states mix with the SM particles: (right-handed) top-quark and/or Higgs compositness
 [review]

Hypothetical UV models

 \bar{b}/\bar{t} 00000 C b/t

 A/ϕ

 $\sim Z'/W'$

t

b/t

 $\mathrm{t}_R \longrightarrow \chi$

NEW FORCES INVOLVING TOP QUARKS?

- Extended scalar sectors "two Higgs doublet models" from SUSY or other BSM physics [review]
- High-mass force carriers similar to the W and Z bosons : Z' and W' bosons
 [review]
- Massive "chiral" colored force carriers, otherwise similar to the gluon: axigluons [<u>Mimasu et.al.</u>]
- Composite sector whose bound states mix with the SM particles: (right-handed) top-quark and/or Higgs compositness [review]

- Hypothetical UV models
 - predict force-carrier exchange
 - modify predictions for LHC processes
 - described by "effective theory"

- Search for in LHC data!
- Combine t vs. t & t vs. b & t vs. light quarks

FOUR TOP QUARK PRODUCTION

- ATLAS and CMS measure tttt in all decay channels ol to 4l
- Statistically limited: **σ**(SM) = 13.4 + 1 2.5 fb
 - most sensitive channel: 2 & with a same charge lepton pair
- Event-level BDTs, so far, are the workhorse classifiers

FOUR TOP QUARKS WITH A GNN: ATLAS

- New result combining 2ℓSS and ≥3ℓ channels
 - Better ttW background estimation procedure based on chargedependent N_{jet} scaling patterns
 - Separate treatment of 3t, tttW, tttq
 - Lower jet (≥20 GeV) and lepton (≥ 15 GeV) p_T cuts
- Now using a Graph-NN discriminant [GRAPH NETS]
 - *Classifier* trained for cross-section measurement LLR trick
 - Edge-Convolution layers exploit multi-jet correlation
 - Leptons, E_T^{miss}, variable-length jet system

• Result
$$\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3}(\text{stat})^{+4.6}_{-3.4}(\text{syst}) \text{ fb} = 22.5^{+6.6}_{-5.5} \text{ fb}$$

 $\mu = 1.9 \pm 0.4(\text{stat})^{+0.7}_{-0.4}(\text{syst}) = 1.9^{+0.8}_{-0.5}$

6.1 σ (4.3 σ expected), consistent with SM at 1.8 σ											
Operators	Expected C_i/Λ^2 [TeV $^{-2}$]	Observed C_i/Λ^2 [TeV $^{-2}$]	\overline{t} \overline{t}								
O_{OO}^1	[-2.4, 3.0]	[-3.5, 4.1]	\sim								
O_{Ot}^{1}	[-2.5, 2.0]	[-3.5, 3.0]	X								
$O_{tt}^{\tilde{1}}$	[-1.1, 1.3]	[-1.7, 1.9]									
O_{Qt}^8	[-4.2, 4.8]	[-6.2, 6.9]	$t \sim t$								
	•										

Need more measurements & more operators

SHAPE CALIBRATION WITH ABCDNN

Simulation

Data

N_i

 $\mathcal{T}(\vec{x}, \vec{x}_0 | \vec{c}_{sig})$

Signal region

- CMS : BDT classifier from 20 features for all-hadronic four-top background
- Corrects BDT shape using [<u>ABCDnn</u>]: Neural autoregressive flow
 - Learn a invertible transformation of H_T/BDT shape from data to simulation conditioned on a region c

 $\int \mathcal{T}(\vec{x}, \vec{x}_0 | \vec{c}) f_{src}(\vec{x}_0) \, d\vec{x}_0 = f_{target}(\vec{x} | \vec{c})$

- Technically, a DNN predicts the parameters of a bijective mapping
 - Encoding of indexed region is DNN input \rightarrow extrapolate to SR
- NN version of traditional ABCD method
- Validation region between SR and CRs (N_{jet}=8)

Nh

 $\mathcal{T}(\vec{x} \mid \vec{x}_0; \vec{c}_2)$

 $\mathcal{T}(\vec{x} \mid \vec{x}_0^{\mathsf{I}}; \vec{c}_1)$

14

m_{H/A} [TeV]

A PARAMETRIZED CLASSIFIER IN TT+(H/A \rightarrow TT)

2.2

2.0

2.0

+0.8 -0.6 √s = 13 TeV, 139 fb⁻

1.9 σ

4.3 σ

4.7 σ

Best-fit $\mu = \sigma_{\text{max}} / \sigma_{\text{max}}^{\text{SM}}$

Tot. (Stat., Syst.) Obs. Sig.

 $^{+1.6}_{-1.2}$ ($^{+0.7}_{-0.7}$, $^{+1.5}_{-1.0}$)

+0.8 (+0.4 , +0.7-0.6 (-0.4 , -0.4

Observed limit

•••••• Expected limit

tanβ=0.5

 $tan\beta=1.0$

±1σ

 $\pm 2\sigma$

+0.4 +0.7

ATLAS

1L/2LOS

2LSS/3L

tot.
 stat.

- The 2HDM model as a function of M_{A/H} predicts resonant 4t production
 - 1. Use the signal region from the ATLAS 2ℓSS /≤3l 4t cross section measurement
 - 2. Train "parametrized" multi-variate discriminate as a function of M_{A/H}
 - example of a one-parameter "parametrized classifier"

• Can use a similar technique for high-dimensional EFT measurements?

TOP QUARK CHARGE ASYMMETRY

- Use subtle kinematic effects to target interactions with light quarks
- The "valence" light-quark carries, on average, a larger fraction of the protons momentum compared to anti-quarks

Lab frame

anti-top \rightarrow central

- - The +t quark in pair production is more forward
 - Charge asymmetry cancels overwhelming gluon-initiated background
 - Permille effect
 - CMS (1ℓ) and ATLAS (1ℓ/ 2ℓ, resolved/boosted) have measured A_C (tt)
 - ATLAS $A_{C}(tt) = 0.0068 \pm 0.0015 \leftrightarrow 4.7\sigma$ evidence

6 7] 16

arxiv:2208:12095

TOP QUARK CHARGE ASYMMETRY

- Use subtle kinematic effects to target interactions with light quarks
- The "valence" light-quark carries, on average, a larger fraction of the protons momentum compared to anti-quarks

- The +t quark in pair production is more forward
- Charge asymmetry cancels overwhelming gluon-initiated background
 - Permille effect
- CMS (1ℓ) and ATLAS (1ℓ/ 2ℓ, resolved/boosted) have measured A_C(tt)
 - ATLAS $A_{c}(tt) = 0.0068 \pm 0.0015 \leftrightarrow 4.7\sigma$ evidence

[TOP-21-014]

[arxiv:2208:12095]

TOP QUARK CHARGE ASYMMETRY

- Use subtle kinematic effects to target interactions with light quarks •
- The "valence" light-quark carries, on average, a larger fraction of the protons momentum compared to anti-quarks

- The +t quark in pair production is more forward
- Charge asymmetry cancels overwhelming gluon-initiated background ٠
 - Permille effect •
- CMS (1l) and ATLAS (1l/ 2l, resolved/boosted) have measured $A_c(tt)$
 - ATLAS $A_c(tt) = 0.0068 \pm 0.0015 \leftrightarrow 4.7\sigma$ evidence

[TOP-21-014]

 \rightarrow resolved with Energy asymmetry

TOP QUARKS WITH ADDITIONAL LEPTONS

- Targets top quark pair production in association with Z/W/H [TOP-22-006]
 - 2lSS/3l/4l categories with different b-tag multiplicities and with/without on Z requirement

- 178 measurements with full uncertainty correlation, constraining 22 operators
- most recent CMS step towards global in-experiment fit

GLOBAL FITS (WITHIN EXPERIMENTS)

- CMS "top quark pair + Z/W/H"
 - full 22D uncertainty correlation
 - 22 operators, 178 measurements
- No signal of new forces down to 10⁻¹⁸ m
- ATLAS: Higgs+EWK+EWPO
 - LEP & SLC EW precision data •
 - 6 coeff. + 22 lin. comb •

Diboson C_{W}

 $C_{HWB} C_{HD} C_{ll}$

 $C_{_{He}} = C_{_{Hl}}^{_{(3)}} = C_{_{Hl}}^{^{(1)}}$

 $C_{{}_{Hq}}^{(3)} \ C_{{}_{Hq}}^{(1)} \ C_{{}_{Hu}} \ C_{{}_{Hu}}$

EWPO

 $C_{H\square}$

 $C_{{}_{HB}}$

 C_{HW}

 C_{HG}

 C_{tH}

 C_{bH}

٠

mostly conistent with SM top EW

tīV

 $C_{\scriptscriptstyle HQ}^{\scriptscriptstyle (1)}$

 $C_{\scriptscriptstyle HQ}^{\scriptscriptstyle (3)}$

 C_{Ht}

 C_{tW}

 C_{tB}

 $C^{3,1}_{Qq}$

 $C_{G} \ \ C_{Qq}^{1,8} \ \ C_{Qq}^{3,8}$ C^{s}_{Qu} C^{s}_{Qd} $C_{\tau H}$ C_{tG} C^8_{td} C^{*}_{tu} C_{tq}^{8} $C_{\mu H}$ Higgs Need to combine all sectors ٠

Other WCs profiled (20)

LOOKING INTO MANY DIRECTIONS AT ONCE

- [Ellis, Sanz, et.al. FitMaker JHEP04(2021)279]
- Global fits: Combine all available individual measurements outside the collaborations
 - For single or few operators: tight constraint from combined measurement
- Our earlier example: forces of left- and right-handed top quarks two operators
- However(!) including all EFT operators leads to much less powerful constraints
 - Physics question: Can we use the kinematic information in the events to resolve the ambiguities?

- Can machine-learning help to improve the analysis strategy
- Can we parametrize an EFT classifier?

21

TOP QUARK PAIR + Z BOSON

C_{tw} / A² [TeV⁻²]

Weak dipole int.

0.5

-0.5

-1

-1.5

-1

Weak dipole interactio

-0.5

0

0.5

1.5

 $C_{tZ} / \Lambda^2 [TeV^{-2}]$

0

2

CMS Preliminary

- Train separate "SM vs. EFT" classifiers
 - "likelihood trick" for SMEFT effects
 - trained on a signal mix, mixing different kinematics

SM

set limits on weak diple interactions & vector coupling interactions

138 fb⁻¹ (13 TeV)

tWZ ttZ

NN-5D-ttZ output

t(Ī)X WZ VV(V) Xγ NPL

CMS Preliminal

SR-ttz Unc. Data tZq

, $C_{_{IW}}/\Lambda^2$, $C_{_{eQ}}^3/\Lambda^2$) [TeV

/ bin

Events 10

LIJHWS 1.5

CAN WE JUST LEARN EFT EFFECTS "ON AVERAGE"?

- Sending `mixed signals' to the loss function
 - But EFT predictions are polynomial!
 - Averages the training data set sensitivity to linear effects cancels!
 - Classifier does not reflect knowledge on the θ-dependence
- Solution: Back to the drawing board & inject **θ** polynomial SMEFT dependence in estimator.

[<u>TOP-21-001]</u>

A CONDITIONAL SEQUENCE

RS et. al., [2107.10859], [2205.12976]

ML4EFT R. Ambrosio, J. Hoeve, M. Madigan, J. Rojo, V. Sanz [2211.02058]

IMPROVING HIGH DIMENSIONAL LIMITS

- [ML4EFT] study ZH and top quark pairs
- Pheno study with parametrized NN classifiers
- Top quark pairs in low ($N_f=2$) and high feature dimension $N_f=18$
 - Pairs of 2D limits with 6 more ops marginalized
 - Binned vs. unbinned: Some gain w/ unbinned when using 2 features
 - High dimensional observation (N_f=18) constraining a high-dimensional (N_{coef}=8) model using an SM candle
 - Large improvement for N_f=18– mostly in the marginalized limits
 - Take seriously constraining power from SM candle
 - Whether the sensitivity gain survives systematics in an unbinned detector-level analysis is an open question

TOWARDS UNBINNED ANALYSIS

- What's missing to go all-in? Systematics.
 - Systematic effects are not polynomial.
 - However, can be learned with NNs

- A challenge: dim(ν), dim(θ) ~ 20 50, and high event counts in the profiling
- Divide & conquer #1: Experiments begun machinelearning certain nuisances: h_{damp}, b-fragmentation

- Divide & conquer #2: Defer SM-EFT interpretation
 "Unbinned unfolding in high dimensions" [paper]
- Only $p(x_{det}|z_{ptl})$ is available in inforward mode.
- ML-Unfolding algorithms use Baves' theorem $p(x_{det}|z_{ptl})p(z_{ptl}) = p(z_{ptl}|x_{det})p(x_{det})$ to learn $p(z_{ptl}|x_{det})$

- [OmniFold] reweights the observation to the ptl-level
- Report unbinned unfolded data; then SMEFT analysis

SUMMARY

- The LHC is pushing ever deeper into the TeV regime
 - There are no signs of resonant physics beyond the standard model
- Taking seriously what we know symmetries & particle content
 - EFT has become the language of choice
 - We can phrase largly model-independent questions
 - E.g.: Forces between heavy quarks on length scales beyond 10⁻¹⁸ m
- Imply the need for a global view
 - High-dimensional analyses leave room for ambiguities
 - ML tools can significantly help particularly in all-operator fits
- For sure, we'll see more global analyses of the LHC data, tackling more of the "big questions"
- Outlook: At higher mass dimension, the number of operators grows exponentially
 - If we loose track of the operators physics meaning, we're just re-representing the dataset
 - A better representation could then be an unbinned unfolded dataset

REFERENCES

٠

٠

٠

٠

٠

Madminer: Neural networks based likelihood-free inference & related techniques • K. Cranmer, J. Pavez, and G. Louppe [1506.02169] J. Brehmer, K. Cranmer, G. Louppe, J. Pavez [1805.00013] [1805.00020] [1805.12244] J. Brehmer, F. Kling, I. Espejo, K. Cranmer 1907.10621 J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn 1908.06980 ٠ • A. Butter, T. Plehn, N. Soybelman, J. Brehmer 2109.10414 established many of the *main ideas* & *statistical interpretation* in various *NN applications* • Weight derivative regression (A.Valassi) 2003.12853 Parametrized classifiers for SM-EFT: NN with quadratic structure S. Chen, A. Glioti, G. Panico, A. Wulzer <u>JHEP 05 (2021) 247</u> **Boosted Information Trees:** Tree algorithms & boosting S. Chatterjee, S. Rohshap, N. Frohner, <u>R.S.</u>, D. Schwarz [<u>2107.10859</u>], [<u>2205.12976</u>] ML4EFT R. Ambrosio, J. Hoeve, M. Madigan, J. Rojo, V. Sanz [2211.02058] All approaches are "SMEFT-specific ML" with differences mostly on the practical side

[JINST 13 (2018) P10005]

DATA REPRESENTATION

[JINST 17 (2022) P07023]

SIMULATION BASED INFERENCE

Obtain change of likelihood for a specific observation, suitably integrating latent histories. NP optimal!

$$\operatorname{argmin}_{\hat{f}(x)} L = \frac{p(x|\theta)}{p(x|SM)} = \text{ ratio of integrals}$$

what we actually want: change in likelihood of a specific observation

Latent space is integrated in numerator and denominator

[Rojo, Maltoni et.al. SMEFiT JHEP11(2021)089]

- First global interpratations combining experimental results
- Individual operators constrained to 0.02
 TeV regime: 10⁻¹⁸ m
- Caveats
 - background-subtracted inputs
 - simplified uncertainty correlation
- All-operator (marginalized) fits significantly less constraining
 - adding more processes
 → resolve ambiguities
- Experiments move towards more global fits

Fit one operator at a time

[Rojo, Maltoni et.al. SMEFiT JHEP11(2021)089]

 First global interpratations combining experimental results

GLOBAL FITS

- Individual operators constrained to ~ 1TeV regime: 10⁻¹⁸ m
- Caveats
 - background-subtracted inputs
 - simplified uncertainty correlation
- All-operator (marginalized) fits significantly less constraining
 - adding more processes
 → resolve ambiguities
- Experiments move towards more global fits

CALIBRATE BDT SHAPE WITH ABCDNN

Simulation

Data

N_i

 $\mathcal{T}(\vec{x}, \vec{x}_0 | \vec{c}_{sig})$

Signal region

- CMS : BDT classifier from 20 features for all-hadronic four-top background
- Corrects BDT shape using [<u>ABCDnn</u>]: Neural autoregressive flow
 - Learn a invertible transformation of H_T/BDT shape from data to simulation conditioned on a region c

 $\int \mathcal{T}(\vec{x}, \vec{x}_0 | \vec{c}) f_{src}(\vec{x}_0) \, d\vec{x}_0 = f_{target}(\vec{x} | \vec{c})$

- Technically, a DNN predicts the parameters of a bijective mapping
 - Encoding of indexed region is DNN input \rightarrow extrapolate to SR
- NN version of traditional ABCD method
- Validation region between SR and CRs (N_{jet}=8)

Nh

 $\mathcal{T}(\vec{x} \mid \vec{x}_0; \vec{c}_2)$

 $\mathcal{T}(\vec{x} \mid \vec{x}_0^{\mathsf{I}}; \vec{c}_1)$

ENHANCING LINEAR SMEFT SENSITIVITY

- Linear dim6 term is the only unambigous contribution
- Consider W⁺W⁻ production in association ≥ 1 jet
 - $e\mu$ channel has negligible Drell-Yan background
 - Inclusive and differentiation measurements

Events / GeV

Data/SM

- 12 kinematic variables (lepton, jet, ...) are measured
- ATLAS Data 10² Drell-Yan ATLAS Fakes 68% CL WZ,ZZ,Vy 10 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 95% CL Stat. @svst Linear pp $\rightarrow e^{\pm}v\mu^{\mp}v$ j Linear + Quadratic p_{τ}^{jet} > 30 GeV 10 1.2₽ p_{τ}^{jet} > 200 GeV 0.9 0.8 2 10³ 10^{2} c_w/Λ^2 [TeV⁻²] m_{eu} [GeV]

$$\sigma = \sigma^{\text{SM}} + C_{3W}\sigma^{\text{int.}} + C_{3W}^2\sigma^{\text{BSM}}$$
Cancellations
among helicities Same order
as dim. 8

- Recovery

 hard jet (p_T> 200 GeV) requirement changes helicity composition

JHEP 06 (2021) 003

LINEAR SMEFT SENSITIVITY IN WY PRODUCTION

- Boosting to the diboson center-of-mass frame allows to reconstruct decay plan angle φ
- It's distribution carries information on BSM effects in the W_{L/R} helicites.
- Binning $p_T(y)$ in ϕ recovers CP structure; facto 5-10: -0.062 < C_{3W}/Λ^2 < 0.053 TeV⁻² $\rightarrow \Lambda_{BSM} \sim 5$ TeV

SMP-20-005

GOALS FOR MACHINE-LEARNING OF EFT

• SMEFT effects can be

- in the tails of the distributions because, e.g.
 4-point functions grow with energy
- 2. in angular observables & correlations, sometimes encoding CP-violating effects
 - "interference resurrection" <u>PLB 2017 11 086</u>
 "method of moments" <u>JHEP 06 (2021) 031</u>
 - Enhance / single out the linear term
 - Up to triple-angular correlations, x5-10 boost in sensitivity
- 3. on top of "kinematically complex" backgrounds
 - Def: Usually amenable to classification MVAs
 - Unify the training target with classification
- What happens if we classify SMEFT vs. SM?

Tree-level SMEFT amplitude of ZH (transverse polarisation):

