# PIP-II Beam Instrumentation (BI) -Noninvasive Beam Profile Monitor (BProM) Interface Specification Document (ISD)

Document number: ED0016036, Rev A Document Approval

| Signatures Required                                               | Date Approved  |
|-------------------------------------------------------------------|----------------|
| Originator : M.A. Ibrahim, PIP-II Beam Instrumentation L3 Deputy  | -              |
| Reviewer: Victor Scarpine, PIP-II Beam Instrumentation L3 Manager | Checker in TC  |
| Reviewer : Allen Rowe, PIP-II Integration Coordinator             | Checker in TC  |
| Reviewer: Christopher Becker, Integration Engineer                | Checker in TC  |
| Approver: Jeremiah Holzbauer, Accelerator Systems L2 Manager      | Approver in TC |
| Stakeholder Reviews performed off-line using ISD Metadata sheets  | Dataset in TC  |

#### **Revision History**

| Revision | Date of Release | Description of Change                                                                                                                                                                   |  |
|----------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| -        | February 2022   | Initial Release. ISD released for CD-3. Update required with                                                                                                                            |  |
|          |                 | completed stakeholder review.                                                                                                                                                           |  |
| Α        | May 2024        | (cadornaa) Updated approval list; Updated BI document references;<br>Updated to reflect MCID Rev AJ; Updated for FDR based on<br>Laserwire Mini-review and follow-up to recommendations |  |
|          |                 |                                                                                                                                                                                         |  |



Page left intentionally blank.

# Table of Contents

| 1.                          | Pur                                    | pose                                                                                                                                                                                                                                                                                                                                        | 5                                                 |
|-----------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 2.                          | Sco                                    | ope                                                                                                                                                                                                                                                                                                                                         | 5                                                 |
| 3.                          | Acr                                    | onyms                                                                                                                                                                                                                                                                                                                                       | 6                                                 |
| 4.                          | Ref                                    | ference Documents                                                                                                                                                                                                                                                                                                                           | 7                                                 |
| 4                           | .1.                                    | List of Figures                                                                                                                                                                                                                                                                                                                             | 7                                                 |
| 4                           | .2.                                    | List of Tables                                                                                                                                                                                                                                                                                                                              | 8                                                 |
| 5.                          | Rol                                    | es and Responsibilities                                                                                                                                                                                                                                                                                                                     | 9                                                 |
| 5                           | .1.                                    | Author(s)                                                                                                                                                                                                                                                                                                                                   | 9                                                 |
| 5                           | .2.                                    | Owner                                                                                                                                                                                                                                                                                                                                       | 9                                                 |
| 5                           | .3.                                    | Reviewer                                                                                                                                                                                                                                                                                                                                    | 9                                                 |
| 5                           | .4.                                    | Approver                                                                                                                                                                                                                                                                                                                                    | 9                                                 |
| 5                           | .5.                                    | Stakeholder                                                                                                                                                                                                                                                                                                                                 | 9                                                 |
| 6.                          | Inte                                   | erface Description Summary1                                                                                                                                                                                                                                                                                                                 | 0                                                 |
|                             |                                        |                                                                                                                                                                                                                                                                                                                                             |                                                   |
| 6                           | .1.                                    | MICD Lookup Table for Noninvasive BProM Interfaces 1                                                                                                                                                                                                                                                                                        | 1                                                 |
| 6<br>7.                     |                                        | MICD Lookup Table for Noninvasive BProM Interfaces 1<br>cuum Interfaces                                                                                                                                                                                                                                                                     |                                                   |
| 7.                          |                                        |                                                                                                                                                                                                                                                                                                                                             | 3                                                 |
| 7.                          | Vac                                    | cuum Interfaces                                                                                                                                                                                                                                                                                                                             | 3                                                 |
| 7.                          | Vac                                    | cuum Interfaces                                                                                                                                                                                                                                                                                                                             | 3<br> 4<br> 5                                     |
| 7.                          | Vac                                    | cuum Interfaces                                                                                                                                                                                                                                                                                                                             | 3<br> 4<br> 5                                     |
| 7.                          | Vac<br>.1.                             | cuum Interfaces       1         Mechanical       1         7.1.1. Beam Line Vacuum       1         7.1.2. Optical Transport Line       1                                                                                                                                                                                                    | 3<br> 4<br> 5<br> 5                               |
| 7.                          | Vac<br>.1.                             | cuum Interfaces       1         Mechanical       1         7.1.1. Beam Line Vacuum       1         7.1.2. Optical Transport Line       1         Alignment       1                                                                                                                                                                          | 3<br> 4<br> 5<br> 6                               |
| 7.                          | Vac<br>.1.                             | cuum Interfaces       1         Mechanical       1         7.1.1. Beam Line Vacuum       1         7.1.2. Optical Transport Line       1         Alignment       1         7.2.1. Optical Transport Line       1         7.2.1. Optical Transport Line       1                                                                              | 3<br> 4<br> 5<br> 6<br> 6                         |
| 7.<br>7<br>7                | Vac<br>.1.                             | cuum Interfaces 1   Mechanical 1   7.1.1. Beam Line Vacuum 1   7.1.2. Optical Transport Line 1   Alignment 1   7.2.1. Optical Transport Line 1   7.2.2. Beamline Boxes 1                                                                                                                                                                    | 3<br> 4<br> 5<br> 6<br> 6                         |
| 7.<br>7<br>7<br>7           | Vac<br>.1.<br>.2.                      | cuum Interfaces       1         Mechanical       1         7.1.1. Beam Line Vacuum       1         7.1.2. Optical Transport Line       1         Alignment       1         7.2.1. Optical Transport Line       1         7.2.2. Beamline Boxes       1         7.2.3. Mirror Boxes       1                                                  | 3<br> 4<br> 5<br> 6<br> 6<br> 6                   |
| 7.<br>7<br>7<br>7<br>7<br>7 | Vac<br>.1.<br>.2.<br>.3.               | cuum Interfaces       1         Mechanical       1         7.1.1. Beam Line Vacuum       1         7.1.2. Optical Transport Line       1         Alignment       1         7.2.1. Optical Transport Line       1         7.2.2. Beamline Boxes       1         7.2.3. Mirror Boxes       1         Cleaning       1                         | 3<br> 4<br> 5<br> 6<br> 6<br> 7<br> 8             |
| 7.<br>7<br>7<br>7<br>7<br>7 | Vac<br>.1.<br>.2.<br>.3.<br>.4.<br>.5. | cuum Interfaces       1         Mechanical       1         7.1.1. Beam Line Vacuum       1         7.1.2. Optical Transport Line       1         Alignment       1         7.2.1. Optical Transport Line       1         7.2.2. Beamline Boxes       1         7.2.3. Mirror Boxes       1         Cleaning       1         Thermal       1 | 3<br> 4<br> 5<br> 6<br> 6<br> 6<br> 7<br> 8<br> 8 |

| 8.2.    | Location                        | 20 |
|---------|---------------------------------|----|
| 8.3.    | Mounting                        | 20 |
|         | 8.3.1. Optical Transport Line   | 20 |
|         | 8.3.2. Mirror Box               | 21 |
|         | 8.3.3. Laser Room Wall Support  | 22 |
|         | 8.3.4. Beam Line Components     | 22 |
|         | 8.3.5. Alignment                | 23 |
| 8.4.    | Rigging Equipment               | 23 |
| 9. Bui  | Iding Infrastructure Interfaces | 24 |
| 9.1.    | Environmental                   | 24 |
| 9.2.    | Cable Penetration               | 25 |
| 9.3.    | Cable                           | 25 |
|         | 9.3.1. Cable Selection          | 26 |
|         | 9.3.2. Common mode chokes       | 26 |
| 9.4.    | Relay Rack                      | 27 |
| 9.5.    | AC Power                        | 28 |
| 9.6.    | Grounding                       | 28 |
| 9.7.    | LCW                             | 28 |
| 9.8.    | Laser Room                      | 29 |
| 10. LLF | RF Interfaces                   | 30 |
| 11. MP  | S Interfaces                    | 30 |
| 12. Co  | ntrol System Interfaces         | 31 |
| 12.1.   | Ethernet Network                | 32 |
| 12.2.   | Clock & Timing System Interface | 33 |
| 12.3.   | Motion Control Interfaces       | 33 |
| 13. Sat | fety Systems Interface          | 34 |

# 1. Purpose

Interface Specification Documents (ISDs) contain the information or references to the information that is necessary to fully define and complete the given interface between WBS systems [1]. Interfaces are defined globally in the PIP-II Master Interface Control Document (MICD) [2], which then reference the pertinent ISDs which contain the particular interface details. The ISD contains all the information or references to the information that is necessary to fully define and complete the given interface.

Key cost, schedule, technical and programmatic assumptions are provided in PIP-II Project Assumptions [3].

# 2. Scope

This ISD includes describes the interfaces between the **Beam Instrumentation (BI) Noninvasive Beam Profile Monitor (BProM) System** and other PIP-II supporting systems, subsystems and devices. Included are the mechanical and electrical interfaces needed for installation as well as the information-passing interfaces. The interface locations are identified. Subsystems that connect to or cross the boundary are identified.

Interface specifications are upwards traceable to the associated Global Requirements Documents (GRDs) [4], Physics Requirements Documents (PRDs) [5][6][7], Functional Requirement Specifications (FRSs) [8], and Technical Requirement Specifications (TRSs) [9][10] where applicable.

# 3. Acronyms

| BAL    | Booster Absorber Line                 |
|--------|---------------------------------------|
| BI     | Beam Instrumentation                  |
| BLDGI  | Building Infrastructure (WBS)         |
| BProM  | Beam Profile Monitor                  |
| BTL    | Booster Transport Line                |
| САМ    | Control Account Manger                |
| СМ     | Cryomodule                            |
| CMPLX  | Linac Complex (WBS)                   |
| CNTRL  | Controls (WBS)                        |
| DAQ    | Data Acquisition                      |
| EMI    | Electromagnetic Interference          |
| FESHM  | Fermilab ES&H Manual                  |
| FRS    | Functional Requirements Specification |
| GRD    | Global Requirements Document          |
| HV     | High Voltage                          |
| HWR    | Half Wave Resonator                   |
| IDL    | Installation Deliverables List        |
| ISD    | Interface Specification Document      |
| L2M    | Level 2 Manager                       |
| L3M    | Level 3 Manager                       |
| LCW    | Low Conductivity Water                |
| LEBT   | Low Energy Beam Transport             |
| LI     | Linac Installation (WBS)              |
| LLRF   | Low Level Radio Frequency             |
| LV     | Low Voltage                           |
| MEBT   | Medium Energy Beam Transport          |
| MICD   | Master Interface Control Document     |
| MPS    | Machine Protection System             |
| OTL    | Optical Transport Line                |
| PIP-II | Proton Improvement Plan II Project    |
| PPE    | Personal Protection Equipment         |
| PRD    | Physics Requirements Document         |
| QC     | Quality Control                       |
| RFI    | Radio Frequency Interference          |
| SCL    | Superconducting LINAC                 |
| SS     | Safety System (WBS)                   |
| TC     | Teamcenter                            |
| TIO    | Technical Integration Office          |
| TLBA   | Transfer Line and Beam Absorber Line  |

| TRS | Technical Requirements Specification |
|-----|--------------------------------------|
| UHV | Ultra-High Vacuum                    |
| VAC | Vacuum (WBS)                         |
| WBS | Work Breakdown Structure             |
| WFE | Warm Front End                       |

# 4. Reference Documents

| #   | Reference                                                      | Document #        |
|-----|----------------------------------------------------------------|-------------------|
| 1.  | PIP-II WBS Dictionary                                          | PIP-II docDB 599  |
| 2.  | PIP-II Master Interface Control Document (MICD)                | ED0010433         |
| 3.  | PIP-II Project Assumptions                                     | PIP-II docDB144   |
| 4.  | PIP-II Global Requirements Document (GRD)                      | ED0001222         |
| 5.  | PIP-II Parameters Physics Requirements Document (PRD)          | ED0010216         |
| 6.  | PIP-II Misalignment Tolerances PRD                             | ED0010231         |
| 7.  | PIP-II BI Physics Requirements Document (PRD)                  | ED0010230         |
| 8.  | PIP-II BI Functional Requirements Specifications (FRS)         | ED0008303         |
| 9.  | PIP-II Noninvasive BProM Technical Requirements Document (TRS) | ED0013714         |
| 10. | PIP-II BI DAQ Electronics TRS                                  | ED0013715         |
| 11. | PIP-II BI Ethernet Networking Requirements                     | ED0030907         |
| 12. | PIP-II BI Server Software Requirements Specifications          | ED0030906         |
| 13. | PIP-II Document Management and Control Procedure               | PIP-II docDB 2946 |
| 14. | PIP-II UHV Certification Specification                         | ED0026278         |
| 15. | Producing Very Low Particulate UHV Components                  | ED0003571         |
| 16. | PIP-II Lattice Files                                           | ED0011224         |
| 17. | PIP-II BI Installation Deliverables List (IDL)                 | ED0011271         |
| 18. | PIP-II BI Quality Control (QC) Plan                            | PIP-II docDB 5520 |
| 19. | PIP-II 800 MeV SCL Optics                                      | PIP-II docDB 119  |

# 4.1. List of Figures

| Figure 6-1 : Interface Map between BI and PIP-II WBS Teams | . 10 |
|------------------------------------------------------------|------|
| Figure 7-1 : Diagram of Laserwire Station                  | . 15 |
| Figure 7-2 : Alignment Activities for Beamline Box         | . 17 |
| Figure 7-3 : Alignment Activities for Mirror Box           | . 17 |
| Figure 8-1 : Laserwire station locations                   | . 20 |
| Figure 8-2 : Beam Tube Hangers                             | . 21 |

| Figure 8-3 : Mirror Box Hangers Tube Hangers       | . 21 |
|----------------------------------------------------|------|
| Figure 8-4 : HWR Hatch Hanger                      | . 22 |
| Figure 8-5 : Laser Room Wall Support               | . 22 |
| Figure 9-1 : Diagram of PIP2IT Laser Hut           | . 29 |
| Figure 12-1 : Block Diagram of BI DAQ Architecture | . 32 |
| Figure 13-1 : PIP2IT Laserwire Interlock System    | . 35 |

# 4.2. List of Tables

| Table 6-1 : Summary of Noninvasive BProM System Interface Types                    | 10 |
|------------------------------------------------------------------------------------|----|
| Table 6-2 : MICD Summary Table for Noninvasive BProM Interfaces                    | 11 |
| Table 7-1 : PIP-II Documentation for Vacuum Interfaces                             | 13 |
| Table 7-2 : PIP2IT Documentation about PIP2IT MEBT LaserWire Prototype             | 14 |
| Table 7-3 : Mechanical Drawings and/or CAD Models for Noninvasive BProM Components | 14 |
| Table 8-1 : PIP-II Documentation for Installation Interfaces                       | 19 |
| Table 9-1 : PIP-II Documentation of Building Infrastructure Interfaces             | 24 |
| Table 9-2 : Gallery Environment Specifications                                     | 24 |
| Table 9-3 : PIP-II Documentation of Standard Cable                                 | 25 |
| Table 9-4 : PIP-II Documentation of Standard Relay Racks                           | 27 |
| Table 9-5 : Summary of BI Rack Allocation                                          | 27 |
| Table 10-1 : PIP-II Documentation for Phase Reference Line Interface               | 30 |
| Table 12-1 : PIP-II Documentation for Control System Interface                     | 31 |
| Table 12-2 : PIP-II Documentation for Global Clock System Interfaces               | 33 |
| Table 12-3 : PIP-II Documentation for Timing System Interfaces                     | 33 |
| Table 13-1 : ESH Documentation for PIP2IT Laser Lab                                | 34 |

# 5. Roles and Responsibilities

# 5.1. Author(s)

Responsible for ISD preparation, including layout, proper format, interface identification, interface verification expectations, interface traceability, and additional descriptive detail, as appropriate. The author is expected to engage subject matter experts as needed to ensure technical content is appropriately assessed and captured. The author is also expected to identify all applicable stakeholders to their noted interface(s). In some cases, the author can also have the role of the document Owner.

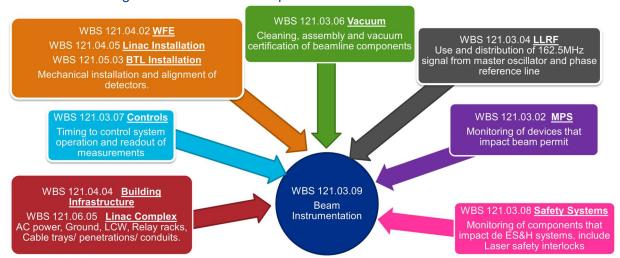
# 5.2. Owner

Primary stakeholder and responsible for identifying the goals, objectives, and roles/responsibilities pertaining to the document and for assuring activities/expectations are performed as described. This is typically the L3M of the sub-system to which this ISD belongs. The document owner is responsible for maintaining document content, revisions, and updates. An Owner is considered a "Checker" in TC workflow release when they are not the document Author.

# 5.3. Reviewer

Technical Integration Office (TIO) reviewers are responsible for ensuring ISD format is consistent with project standards, the appropriate document owner/author/reviewer/approver have been identified, the appropriate review process was implemented, and the appropriate document release process is executed. The TIO reviewers are required to be aware that the ISD document exists and is maintained within the framework of the project Document Management and Control Procedure[13]. A Reviewer is considered a "Checker" in the TC workflow release.

# 5.4. Approver


The L2M shall evaluate the basis for interface definition, ensure that interfaces are properly articulated, and ensure that they align with higher level interfaces. The L2M shall ensure that CAMs, associated engineering staff, and other Systems Managers are properly engaged and notified of the document's technical implications. Only the System Manager responsible for the work product addressed in the specification is expected to provide approval. The Approver is an "Approver" in the TC workflow release.

# 5.5. Stakeholder

Each ISD includes a metadata sheet which lists each ISD interface individually and assigns stakeholders to each. A stakeholder is the associated L3M or subject matter expert that the interface connects or interfaces to and as a result has a direct stake in the interface. Identified stakeholders are expected to be reviewers, ensuring accuracy and completeness, and general agreement of the interface and content applicable to them. Stakeholder reviewers ensure a record of decision is made offline for accepting, rejecting, or modifying the interfaces assigned to them within the ISD metadata sheet (included as a dataset in TC).

# 6. Interface Description Summary

As shown in Figure 6-1, BI interfaces with other WBS systems, which are globally identified in the PIP-II WBS Dictionary [2].





However, of these, only a subset is relevant to the Noninvasive BProM systems (Table 6-1).

#### Table 6-1 : Summary of Noninvasive BProM System Interface Types

|   | Vacuum         | Interfaces related to cleaning, assembling, and meeting UHV certification             |  |  |
|---|----------------|---------------------------------------------------------------------------------------|--|--|
|   |                | standards for beam line components, in order to maintain beamline integrity           |  |  |
|   | Installation   | Interfaces related to integration of components onto the girders and beamline as      |  |  |
|   |                | well as alignment of components within the beamline enclosure                         |  |  |
|   | Building       | Interfaces related to installation of components within the service building and      |  |  |
|   | Infrastructure | use of utilities within the PIP-II complex                                            |  |  |
|   |                | Includes interfaces related to the LCW piping and distribution system for cooling     |  |  |
| Χ | LLRF           | Interfaces related to the 162.5MHz RF signal, generated by LLRF                       |  |  |
|   | Control        | Interfaces related to data pathways for read, write, and plotting capabilities in the |  |  |
|   | System         | Control system                                                                        |  |  |
|   |                | Includes interfaces related to signal pathways for the global clock system            |  |  |
|   |                | Includes interfaces related to signal pathways for timing system                      |  |  |
|   |                | Includes interfaces related to signal pathways for motor and motion control           |  |  |
| Χ | MPS            | Interfaces related to signal pathways needed to monitor device that may inhibit       |  |  |
|   |                | beam                                                                                  |  |  |
|   | Safety         | Interfaces related to monitoring E&SH concerns and limits, including laser safety     |  |  |
|   | System         | interlocks                                                                            |  |  |

# 6.1. MICD Lookup Table for Noninvasive BProM Interfaces

All interfaces between WBS systems are identified and enumerated in the PIP-II MICD [2].

Table 6-2 lists all BI interfaces as well as highlights those interfaces which are relevant to the BPM system.

## Table 6-2 : MICD Summary Table for Noninvasive BProM Interfaces

| MCID #   | Interface Name                                              | ISD Section |
|----------|-------------------------------------------------------------|-------------|
| 1777-001 | HWR CM BPM Connections                                      |             |
| 1839-001 | SSR CM BPM Connections                                      |             |
| 2554-001 | One 162.5 MHz RF phase reference signal for instrumentation |             |
|          | electronics                                                 |             |
| 2649-001 | BI WFE and SCL Vacuum Interface for all instrumentation     | 7           |
| 2649-002 | BTL Instrumentation                                         |             |
| 2649-003 | Laser optical transport line vacuum                         | 7           |
| 2695-001 | Beam Instrumentation Control System Interface               | 12          |
| 2695-002 | Beam Instrumentation Timing Interface                       | 12.2        |
| 2695-003 | Timing and control signals                                  | 12.2        |
| 2695-004 | Network interface                                           | 12.1        |
| 2695-005 | BI invasive BProM motion control interface                  |             |
| 2695-006 | General DAQ for Beam Instrumentation                        | 12          |
| 2705-002 | WFE motion control interface                                |             |
| 2709-002 | Resistive Wall Current Monitor control interface for        |             |
|          | instrumentation cart                                        |             |
| 2740-001 | BI's Linac Laser Lab Interface to SS's Linac LSS.           | 13          |
| 2785-001 | Beam Instrumentation MPS Interface                          |             |
| 2794-001 | IS emittance scanners interface                             |             |
| 2794-002 | Non-Invasive BCM pickup interface to WFE                    |             |
| 2794-004 | LEBT EIDs interface                                         |             |
| 2794-005 | LEBT bend beam dumps electrical interface                   |             |
| 2794-006 | LEBT absorber electrical interface                          |             |
| 2794-007 | DPI electrical interface                                    |             |
| 2794-008 | MEBT scrapers electrical interface                          |             |
| 2794-009 | MEBT kickers masks electrical interface                     |             |
| 2794-010 | MEBT BPMs mechanical interface                              |             |
| 2794-012 | MEBT other current measuring devices interface              |             |
| 2794-014 | MEBT wire scanners interface                                |             |
| 2794-015 | MEBT emittance scanners interface                           |             |
| 2794-016 | MEBT laser wire interface                                   | 7           |
| 2794-017 | MEBT Instrumentation Mechanical Interface                   | 8           |
| 2794-018 | MEBT Absorber electrical interface                          |             |
| 2796-001 | Instrumentation racks                                       | 9.4         |

| 2796-002 | Power                                                | 9.5 |
|----------|------------------------------------------------------|-----|
| 2796-003 | Grounding                                            | 9.6 |
| 2796-004 | Cables for BI systems                                | 9.3 |
| 2796-005 | LCW for 6 Allison Scanners                           |     |
| 2797-001 | BI equipment common requirements - rigging           | 8.4 |
| 2797-002 | Inst-Structure Interfaces, Warm Units                | 8   |
| 2797-003 | Laser optical transport line with Linac Installation | 8   |
| 2809-001 | TLBA Beam instrumentation                            |     |
| 2822-001 | Laser Room                                           | 9.8 |
| 2822-002 | Space for Beam Instrumentation racks and equipment   | 9   |
| 2822-003 | BI Penetrations                                      | 9.2 |
| 2822-004 | Support of laser optical transport line              | 9   |

# 7. Vacuum Interfaces

| Documents             | Number    |
|-----------------------|-----------|
| PIP-II Warm Units TRS | ED0008578 |
| PIP-II Vacuum TRS     | ED0013681 |
| PIP-II MEBT TRS       | ED0014432 |
| PIP-II Vacuum ISD     | ED0016361 |
| PIP-II MEBT ISD       | ED0022346 |

Table 7-1 : PIP-II Documentation for Vacuum Interfaces

Vacuum interfaces refer to interfaces and any requirements related to cleaning, assembling, and meeting UHV certification standards for beam line components, in order to maintain beamline integrity.

- 2649-001 VAC-BI (BI WFE and SCL Vacuum Interface for all instrumentation)
  - VAC and BI shall agree on material choice and gas load specification of BI components within vacuum space. Work of leak checking, and certification will be completed by VAC.
  - BI provides information on the materials used inside vacuum space and connecting parameters to beam tubes. Certifying and leak checking of instruments is under BI Scope.
- 2649-003 Laser optical transport line vacuum
  - BI will provide vacuum requirements and design of optical transport line as well as vacuum connection details
  - Vac will connect vacuum pumping to optical transport line and support
- 2794-016 MEBT laser wire interface
  - The physical interfaces between WFE and BI are the laser wire's vacuum enclosures flanges that mate to the beam line vacuum enclosure (upstream and downstream).
  - WFE shall provide space in the MEBT beam line for installation of the laser wire stations; WFE shall provides the stand and spool pieces needed for installation; WFE shall define the size, materials and finish of the mating surfaces; WFE and BI shall define together specifics of the beam line configuration, for instance vacuum requirements at the location of the laser wire
  - BI shall provide complete laser wire units, including the vacuum chambers, all optical elements, all electronics, cables and vacuum equipment
  - LI shall provide installation support to BI and WFE; LI shall vacuum leak check the assemblies after installation

Beamline vacuum chambers and optical boxes for the Noninvasive BProM systems are required to withstand vacuum pressure levels. Designs shall be based on the PIP2IT Laserwire Prototype (Table 7-3).

| Documents                                                 | Number          |
|-----------------------------------------------------------|-----------------|
| PIP2IT MEBT LaserWire Final Design Review                 | ED0006518       |
| PIP2IT MEBT LaserWire                                     | ED0006968       |
| PIP2IT MEBT LaserWire Engineering Assessment              | ED0006970       |
| PIP2IT Laser Wire Profile Monitor MockUp                  | F10551622       |
| Analysis of Laser Induced Dage to PIP2IT Vacuum Viewports | PIP-II-doc-5138 |

### Table 7-2 : PIP2IT Documentation about PIP2IT MEBT LaserWire Prototype

## 7.1. Mechanical

Unless specified in the sub-sections that follow, all mating surfaces for vacuum connections shall be Stainless Steel to Stainless Steel, with a knife edge on a copper seal.

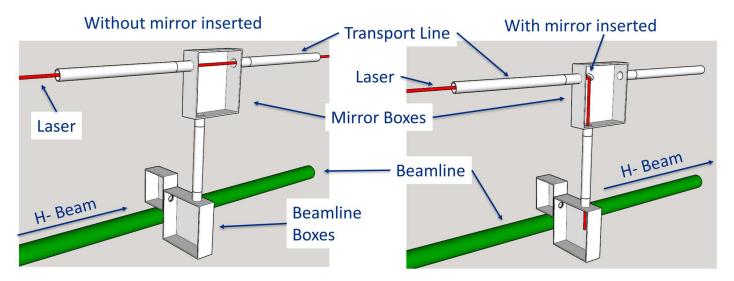
Also, unless specified in the sub-sections that follow, all beam tube connections are to be designed to mate to 2.75" ConFlat® flanges. The flanges may (FC0017528/FC0099586) or may not (FC0099583) be rotatable depending on the particularities of the components being interfaced. The mating surfaces are made of Stainless Steel (316L or 304L), but bi-metal flanges may be used for convenience (e.g. welding).

In addition, bolt connections must be tightened at the industry recommended torque according to the flange type, but not beyond (<u>https://www.dultmeier.com/pdfs/tech-library/C\_BoltTorque.pdf</u>).

Table 7-3 : Mechanical Drawings and/or CAD Models for Noninvasive BProM Components

| Document Number                                           |           |
|-----------------------------------------------------------|-----------|
| Laser Wire Optics Box, Assembly                           | F10225016 |
| Laser Wire Vacuum Chamber,<br>Magnets, and Stand Assembly | F10223388 |
| Optical Junction Box                                      | F10215846 |

#### 7.1.1. Beam Line Vacuum


Beamline vacuum chambers for the NonInvasive BProM systems are required to withstand vacuum pressure levels, required by the beamline sections of the pickup locations, as well as designed with UHV vacuum-friendly materials. In addition, each unit shall have at least one port for vacuum pumping.

# 7.1.2. Optical Transport Line

The laser optical transport line is a separate vacuum system than the accelerator beamline vacuum and is designed as a rough vacuum system with the goal of achieving <250 mTorr.

Individual components and entire system shall be leak tight to a leak rate of 2.5x10<sup>^</sup>-10 Torr-L/s on a calibrated helium leak detector.

The vacuum pumping shall consist of a rough vacuum pump at the center of the beam line. Gauging consisting of quantity 4 Pirani gauges (rough vacuum) shall be installed, one at each end of the line, one near the middle, and one on the inlet of the pump. A roughing valve shall isolate the pumping from the system when needed.



## Figure 7-1 : Diagram of Laserwire Station

# 7.2. Alignment

Fiducialization and alignment requirements of the Laserwire components are provided in PIP-II Noninvasive BProM TRS[9].

# 7.2.1. Optical Transport Line

Th total range of adjustability of all components is at most  $\pm 1$ " in all directions (xyz). Fine adjustment shall be required to maintain optically straight beam tube within 5mm.

Alignment of the optical transport line is coincident with installation of the beam transport line. Activities shall include the following:

- Install laser targets at exit of laser room and end of linac
- Mark Transverse and Longitudinal installation points for each mirror box
- Install HeNe alignment laser, so that the laser is aligned between the laser target

## 7.2.2. Beamline Boxes

Alignment of beamline boxes shall also meet requirements, which are elaborated in PIP-II Misalignments Tolerance PRD [6]. Activities include the following :

- Beamline box alignment can be done anytime after the transport line installation
- Install mirror box mirror with longitudinal position adjustment
  - Align mirror with alignment laser
- Install alignment 'beamline box frame'
  - Open frame which fits as a real box and has a pair of vertical laser targets
- Adjust downward alignment laser trajectory
  - Mirror box mirror longitudinal adjustment and mirror adjustability
  - Transverse position of beamline box frame
  - o Must traverse center of the two targets

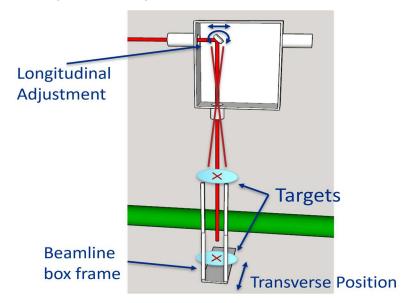
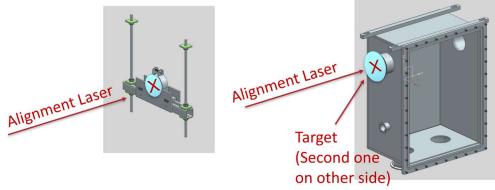



Figure 7-2 : Alignment Activities for Beamline Box

#### 7.2.3. Mirror Boxes

Alignment activities (Figure 7-3) of the mirror boxes shall include the following:


- Install all mirror boxes
  - o Adjust longitudinal position to nominal as indicated by Alignment Team markings
  - Adjust each box transversely such that the input and output flanges are concentric with alignment laser
- Install pipes onto pipe hangers between mirror boxes
  - o Install using jig with laser target
    - Aligning done prior to setting pipe

#### Figure 7-3 : Alignment Activities for Mirror Box





Pipe hanger alignment jig



# 7.3. Cleaning

Standard UHV cleaning and handling techniques, as defined by the PIP-II UHV Certification Specifications [14], shall be used for vacuum components and shall adhere to processes and procedures in Producing Very Low Particulate UHV Components [15]. This covers the general chemical cleaning, UHV flange cleaning, welded bellows chemical cleaning, clean room requirements, PPE and handling practices, and storage of assemblies.

On the other hand, due to the less stringent vacuum required, only minimal cleaning of the laser optical transport line is needed.

# 7.4. Thermal

Components installed in the enclosure, shall withstand operating temperatures between -40°C and 100°C. No in-situ baking is planned, but if required, procedures for lower baking temperature limits shall be implemented for accessible parts, in coordination with Vacuum.

# 7.5. Radiation

The components, including the pickups, connectors, cables, feedthroughs, and any electronics boxes, may be subjected to raised radiation levels at enclosure locations. If needed, materials used for these components shall be selected to withstand those radiation levels.

# 8. Installation Interfaces

Table 8-1 : PIP-II Documentation for Installation Interfaces

| Documents                       | Number    |
|---------------------------------|-----------|
| PIP-II LINAC Installation FRS   | ED0007996 |
| PIP-II Warm Unit Structures TRS | ED0008578 |
| PIP-II MEBT TRS                 | ED0014432 |
| PIP-II MEBT ISD                 | ED0022346 |

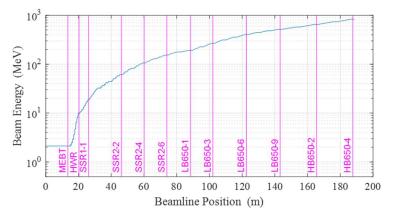
Installation interfaces refer to the interface required for the integration of components onto the girders and beamline as well as alignment of components within the beamline enclosure.

#### • 2794-017 MEBT Instrumentation Mechanical Interface

- WFE shall provide girders made of 80/20 slotted framing rails
- BI shall provide stands for all instrument deliverables to the MEBT. Those include (but may not be limited to) the emittance vacuum chamber, RWCM, ACCTs, DCCT, Laser profile Monitor and the FFC.
- LI shall facilitate installation of the stands and instrumentation on the girders. They shall provide all the standard mounting hardware (e.g. fasteners, brackets...)

## • 2797-002 Inst-Structure Interfaces, Warm Units

- The Warm Unit Structures shall provide volume and support for instrumentation hardware as defined in the referenced drawings.
- o BI team designs and delivers the instrumentation hardware.
- LI team delivers the warm unit structures, which provides support and alignment for the instrumentation hardware.
- LI team delivers the warm unit structures, which provides support and alignment for the instrumentation hardware.
- LI team integrates the warm units prior to installation in the SCL, and provides installation in the SCL.
- 2797-003 Laser optical transport line with Linac Installation
  - o BI provides laser transport line specification and requirements
  - o LI determines not-to-exceed envelope for laser optical transport line.


# 8.1. Deliverables

Completion of the PIP-II BI Installation Delivery List (IDL) [17] and corresponding handoffs through Installation Readiness Reviews shall ensure the readiness of all components, within in the enclosure and gallery, for ownership transfer to installation.

In addition, all acceptance criteria, acceptance procedures, verification procedures, assembly procedures, and associated travelers or checklists are listed in the BI QC Plan [18].

## 8.2. Location

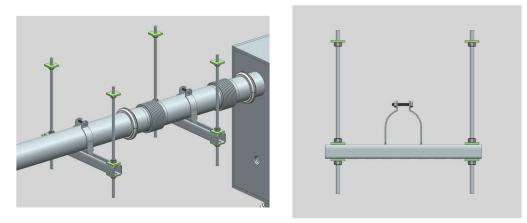
There are 12 laserwire stations in the MEBT, HWR, and SCL. The laser room is upstream of the H-source, which is at 0m in Figure 8-1.



#### Figure 8-1 : Laserwire station locations

The locations are identified based on the PIP-II Parameters PRD [5], PIP-II Lattice Files [16], and PIP-II 800MeV SCL Optics [19].

# 8.3. Mounting


#### 8.3.1. Optical Transport Line

The optical transport line (OTL) has a 90mm (3.54") aperture and is approximately 200m (650') in total length. It shall mounted from the PIP-II enclosure ceiling with beam tube hangers (Figure 8-2). There is a 12" x 12" envelope for installation.

It shall span the gap at the HWR hatch (no ceiling to mount to) and integrate the upstream end of the beamline into the Laser Room.

Using common Unistrut parts, the beam tube hangers are designed to provide a wide range of alignment with sufficient adjustment. Due to concrete anchor requirements in ceiling (FESHM7080), these shall need to be mounted one of two ways: a) suspended from existing Unistrut embedment or b) suspended from additional hung sections of Unistrut (spanning from embedment to embedment).





#### 8.3.2. Mirror Box

Together with the OTL, the mirror box has a 12" x 12" envelope for installation to the PIP-II enclosure ceiling.

The mirror box hangers are constructed of steel, with slotted ceiling plates to adjust for installation obstructions (rebar) and provide z-adjustment as well as a slide plate design with threaded rod hangers to provide x and y adjustment. Access holes at the top shall provide the capability to tack weld threaded rod for safety.

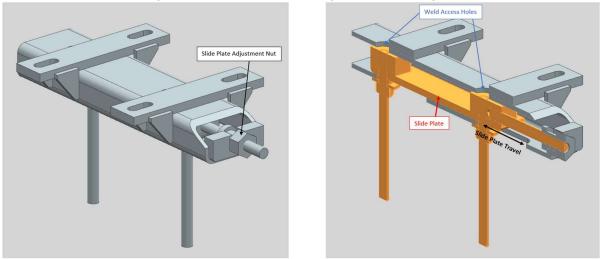
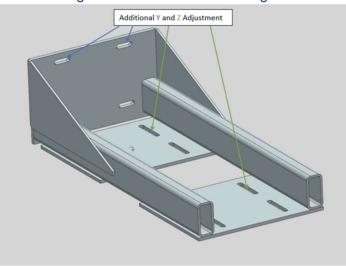
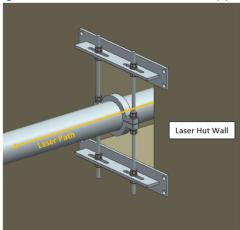




Figure 8-3 : Mirror Box Hangers Tube Hangers


Furthermore, the footprint of HWR hatch require additional requirements for installation. Since there is no ceiling under the HWR hatch, a HWR Hatch Hanger shall be constructed to essentially imitate an extension of the ceiling.



#### Figure 8-4 : HWR Hatch Hanger

#### 8.3.3. Laser Room Wall Support

Vacuum loads are expected at the upstream and downstream ends of the OTL. Because the Laser Room wall is concrete, the Laser Room Wall Support shall be mounted to the outside Laser Room wall and provides support at the upstream end of the OTL. The design contains sufficient alignment considerations in x, y, and z directions.





#### 8.3.4. Beam Line Components

If needed, installation interfaces are load-bearing support stands and/or adjusting plates that mount on the main beam line frame made out of 80/20 slotted framing "rails". The beam line frame is divided into "girders", free-standing sub-sections of the frame, which allow mounting groups of beam line components offline (and in parallel) and facilitate installation. The girders, including the aluminum framing for the main rails as well as 80/20 fasteners and adjustment blocks.

#### 8.3.5. Alignment

Mirror Boxes, Beam Tube Hangers, and Laser Room Wall Support shall have alignment in x, y, and z directions. The total alignment adjustment shall be  $\pm 1$ " in all directions. Fine alignment adjustments shall also be required.

# 8.4. Rigging Equipment

- 2797-001 BI equipment common requirements rigging
  - BI will define the design.
  - BI will provide the rigging interfaces
  - o LI will integrate these systems within the PIP2 footprint

Large subassemblies components, or any dismountable part thereof bigger than what can be handled by a single individual, shall include rigging interfaces for vertical lifting with a crane and/or forklifting interfaces for lifting with a forklift or pallet jack. All rigging components shall comply with requirements of relevant FESHM chapters (e.g., marking of rigging components). All lifting interfaces as well as all payload weights shall be clearly marked.

In addition, all lifting procedures shall be listed in the BI QC Plan [18].

# 9. Building Infrastructure Interfaces

Table 9-1 : PIP-II Documentation of Building Infrastructure Interfaces

| Documents                      | Number    |
|--------------------------------|-----------|
| PIP-II High Bay Building TRS   | ED0006757 |
| PIP-II LINAC Gallery TRS       | ED0006793 |
| PIP-II LINAC Complex TRS       | ED0010906 |
| PIP-II Building Infrastructure | ED0013928 |

Building Infrastructure interfaces refer to interfaces required for installation and operation of systems within the LINAC complex, including cable, cable penetrations, and relay racks as well as building utilities, such as AC power, ground, and LCW.

- 2822-002 Space for Beam Instrumentation racks and equipment
  - o CMPLX shall provide space for Beam Instrumentation racks and equipment.
  - o BI shall define space requirements for beam instrumentation racks and equipment
  - o CMPLX shall provide the required space for BI equipment
  - BLDGI and LI shall coordinate the required space and integrate the locations for BI equipment with CMPLX

## 2822-004 Support of laser optical transport line

- BI will mount support structure to mechanically support the laser optical transport line to the ceiling
- o CMPLX shall verify load-bearing capacity and mounting onto the tunnel ceiling.
- LI will provide installation support.

# 9.1. Environmental

The gallery environment is specified in Table 9-2.

# Table 9-2 : Gallery Environment Specifications

| Radiation | Sensitive electronic components should not be exposed to ionizing radiations. Doses as small as 10 <sup>2</sup> Gy may damage the MOS components used. Consequently, radiation sensitive electronic components should not be installed in the enclosure. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermal   | Electronic components should withstand operating temperatures between -40°C and 100°C. The actual gallery temperature range should be much tighter than that.                                                                                            |
| Humidity  | Electronic components should operate in non-condensing environments of the gallery.                                                                                                                                                                      |

# 9.2. Cable Penetration

#### • 2822-003 BI Penetrations

- BI shall define the distances/locations of the penetrations based on requirements on cable length, signal distortion and any other requirements pertaining to the properties of signal carried by the cables considered.
- CMPLX shall provide the penetrations agreed upon with BI, taking into constraints and requirements from other sub-systems.
- BLDGI shall coordinate the cable database and penetration usage.

BI cables, which run between the pickup and electronics, should utilize from the penetrations nearest the pickup in the enclosure. In addition, cable start locations, end locations, and paths (i.e. penetrations used) shall be recorded and tracked in the PIP-II Cable Database.

The LV signal cables shall be installed in designated cable trays and conduits, shared by other LV cables and signal cables.

On the other hand, the HV signal cables shall be installed in designated cable trays and conduits, shared by other HV cables and signal cables. The HV cable insulation is rated higher than 5 kV (HV power supply).

Also, if the cable path is in a high RFI environment, cables should pass through metallic electrical conduits; aluminum conduits are appropriate to reject RFI. Additional common mode chokes shall be installed at cable segments, as needed.

#### 9.3. Cable

#### Table 9-3 : PIP-II Documentation of Standard Cable

| Documents                                | Number            |
|------------------------------------------|-------------------|
| PIP-II Standard Cable and Connectors     | PIP-II docDB 2824 |
| PIP-II Cable Pull and Documentation Plan | PIP-II docDB 2892 |
| PIP-II Cable Criteria                    | PIP-II docDB 3054 |

#### • 2796-004 Cables for BI systems

- BI shall specify all cables required for BI systems. BLDGI shall supply any standard cables available in PIP-II cable stores. BI shall supply any non-standard cables.
- BI shall define all the cables.
- BLDGI shall deliver standard cables available in PIP-II stores. BI shall deliver any specialty cables.
- LI shall perform all cable pulls.

Cables shall connect the BI pickups in the enclosure to their corresponding electronics in the gallery. PIP-II cable stores shall provide standard cable types; non-standard cable types shall be procured as needed by BI. In addition, cable types, counts, and lengths shall be recorded and tracked.

#### 9.3.1. Cable Selection

The Noninvasive BProM system will require one terminated, coaxial ¼" Superflex Heliax signal cable.

#### 9.3.2. Common mode chokes

EMI coupling into electric circuits by way of ground loops can be reduced by using common-mode filters on both end of all cable segments. A cable segment is any cable between two points where the shield is grounded. For example, a cable between an oscilloscope and a grounded patch panel is a segment. An AC power cord between an instrument and an AC socket is a segment.

Simple common-mode filters can be made by passing the signal cable (twisted pair or coaxial) through a ferrite core. Passing the signal cable several times through the ferrite core increases the magnetic coupling -hence the common-mode noise rejection- by the square of the number of turns... until the capacitive coupling defeats the rejection. In practice, about 7 turns are optimum. The magnetic characteristics of the ferrite cores must correspond to the frequency spectrum of the noise to be rejected.

Ferrite cores can be complemented advantageously by cores of amorphous cobalt alloy or nanocrystalline iron alloy cores next to the ferrite cores. MnZn tubes over the cables are effective against high frequencies >500 MHz. At low frequency down to 50Hz, iron-based nanocrystalline cores are effective. Cores with "soft" B-H loop (e.g., Hitachi Metals Finemet FT-3KL core annealing, Vacuumschmelze 500F field-annealed core) are preferred.

# 9.4. Relay Rack

## Table 9-4 : PIP-II Documentation of Standard Relay Racks

| Documents                     | Number            |
|-------------------------------|-------------------|
| PIP-II Rack Bank Power        | PIP-II docDB 5360 |
| PIP-II Rack Specifications    | PIP-II docDB 5363 |
| LINAC Gallery Rack Allocation | PIP-II docDB 5390 |

# • 2796-001 Instrumentation racks (19" racks available for BI front-end electronics. Includes AC power.)

- Rack requirements are defined by BI
- o BLDGI shall provide the racks, as well as layout of the racks for BI to populate
- LI shall provide installation support to BI and BLDGI

Electronic components shall be installed in the gallery and bolted into standard relay racks based on EIA-310. The chassis shall be 19" wide, and not exceed rack depth when including any rear protruding connectors.

Rack requirements are captured within the PIP-II Relay Rack Specification, and power requirements for each rack are captured in PIP-II Rack Bank Power.

In addition, relay racks for electronics should be located away from magnetic power supplies. Mapping within the LINAC Gallery is provided in the LINAC Gallery Rack Allocation .

# Table 9-5 : Summary of BI Rack Allocation

| Description of BI System                                                 | Rack Bank | Rack Count |
|--------------------------------------------------------------------------|-----------|------------|
| BI systems installed in the WFE (before the shielding wall)              | RB63      | 9          |
| BI systems installed in the WFE (after the shielding wall),<br>HWR, SSR1 | RB74      | 6          |
| BI systems installed in the SSR2                                         | RB4       | 6          |
| BI systems installed in the LB650                                        | RB11      | 6          |
| BI systems installed in the HB650                                        | RB15      | 6          |
| BI systems installed in the SCL (2kW) Dump, BTL Arc1                     | RB20      | 6          |
| BI systems installed in BTL Straight, BAL, Arc2, 25kW<br>Dump            | F37       | 8          |

## 9.5. AC Power

## • 2796-002 Power (BLDGI shall provide power for Beam Instrumentation equipment.)

- o BI shall define power requirements for the Beam Instrumentation equipment
- BLDGI shall design and procure the necessary hardware to extend the electrical service from the panel or disconnect to the beam instrumentation equipment
- LI shall install the necessary hardware to connect the instrumentation equipment to the AC distribution.

The power supplies for all electronic components require 120 V AC, 50/60 Hz power. BI low voltage power supplies (less than 20V) shall primarily be used for DAQ components. BI high voltage supplies shall be used for signal amplification or biasing.

# 9.6. Grounding

## • 2796-003 Grounding (BLDGI shall provide grounding of equipment.)

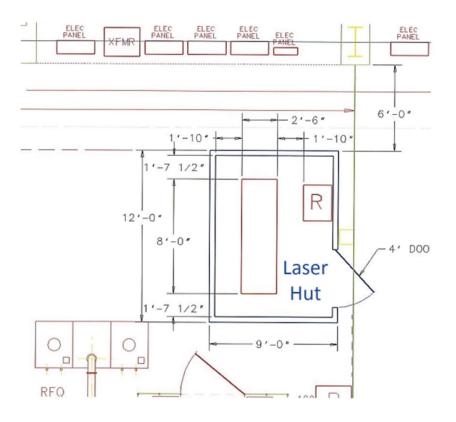
- o BI shall define any special grounding requirements for beam instrumentation equipment
- o BLDGI shall provide the grounding infrastructure required for BI equipment
- o LI shall provide installation support to BI

Grounding is accomplished using trunk lines (500 mcm bare copper conductor), bonded to the ring ground system that encases the entire PIP-II complex, run via cable trays.

Within the enclosure, the cable tray system runs along the beam line at girder height or just below. Appropriate surfaces to connect the cable tray/trunk line to components shall be determined in the field, unless otherwise specified in the design of a component. These surfaces must be bare metal (e.g. not anodized) and accept a compression lug (provided by Building Infrastructure).

In addition, other electronic components are grounded to the AC mains ground by way of the power cord and outlet or rebar network. Additional filtering shall be used to remove line harmonics at the rack power supplies, as needed.

# 9.7. LCW


Not Applicable.

#### 9.8. Laser Room

#### • 2822-001 Laser Room

- The Linac Complex will house the Laser Room
- o CMPLX and BI will determine spatial and infrastructure requirements for the Laser Room
- o CMPLX shall design and construct the conventional portion of the Laser Room enclosure
- o BI shall design, procure and install the technical equipment for the Laser Room

The PIP-II Laser Room, also known as the Laser Hut, shall based on the PIP2IT Laser Room() and must meet beneficial occupancy requirements. In addition, it's design should follow the Laser Laboratory Design Guide (Table 13-1) as well as ergonomics best practiced.



#### Figure 9-1 : Diagram of PIP2IT Laser Hut

Physical dimensions of the Laser Room shall accommodate an optical table, the Class3B and Class 4 laser system, and laser opticals components. In addition, the laser room must have connections to AC Power (Section 9.5), Ground (Section 9.6), Controls global clock and timing system (Section 12.2), and Ethernet (Section 12.1).

# **10. LLRF Interfaces**

The Noninvasive BProM system has no direct interface to LLRF.

Instead, the LLRF system supplies a single reference RF of 162.5Mhz to BI BPM system, which shall distribute a copy to Noninvasive BProM Laser Rooms. Details are elaborated in PIP-II BI Phase Reference Line FRS and TRS (Table 10-1) as well as PIP-II BI DAQ Electronics TRS[10].

# Table 10-1 : PIP-II Documentation for Phase Reference Line Interface

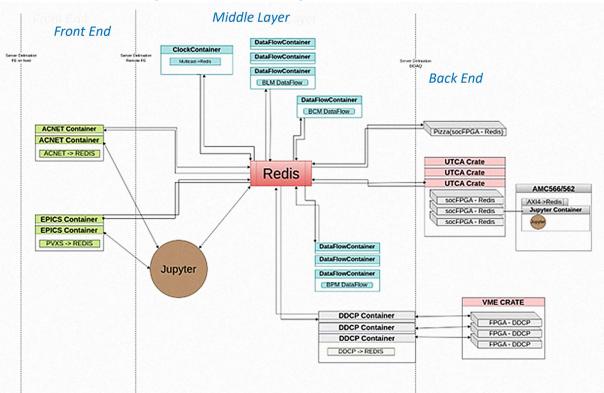
| Documents                                                       | Number    |
|-----------------------------------------------------------------|-----------|
| PIP-II LLRF FRS, Master Oscillator and Precision Reference Line | ED0005057 |
| PIP-II LLRF TRS, RF Distribution                                | ED0005164 |
| PIP-II, LLRF, RF Distribution Block Diagram                     | ED0008050 |
| PIP-II LLRF TRS, Master Oscillator and Precision Reference Line | ED0014024 |
| PIP-II BI Phase Reference Line TRS                              | ED0030047 |
| PIP-II BI Phase Reference Line FRS                              | ED0030105 |

# **11. MPS Interfaces**

Not Applicable.

# **12. Control System Interfaces**

## Table 12-1 : PIP-II Documentation for Control System Interface


| Documents                                                  | Number    |
|------------------------------------------------------------|-----------|
| PIP-II ACC Controls DAQ PIRM TRS                           | ED0013500 |
| PIP-II ACC Controls Front End Interface TRS                | ED0013504 |
| PIP-II ACC Controls Application Software TRS               | ED0013505 |
| PIP-II ACC Controls Console/Server Software & Hardware TRS | ED0013506 |
| PIP-II ACC Controls ISD                                    | ED0016515 |

Control interfaces refer to any signal or data interfaces, providing control inputs to or readback outputs from the Control system. This includes interfaces related to signal pathways for the global clock and timing system.

- 2695-001 Beam Instrumentation Control System Interface (Hardware interface and communication protocol if appropriate to controls front ends.)
  - CNTRL with input from BI shall specify the communication protocol for instrumentation devices to attach to the control system.
  - BI shall provide crates that house instrumentation, processors that interface with the control system, and the associated front-end software. CNTRL shall provide required network connections.
  - CNTRL and BI shall provide integration and testing for all relevant BI devices.
- 2695-006 General DAQ for Beam Instrumentation (Sample and hold readouts and DAC channels)
  - Number of channels sampling requirements, and locations will be defined by BI.
  - Controls provides the readouts into the general control system. Controls will provide the readout hardware as well.
  - Controls will provide installation support and demonstrate operation.

Noninvasive BProM measurements shall be provided through Controls Sample & Hold DAQ electronics. . Details are elaborated in PIP-II BI DAQ Electronics TRS [10].

Other control and readout devices will be presented through PIP-II BI DAQ architecture (Figure 12-1). Details are elaborated in PIP-II BI Server Software Requirements Specifications[12].



#### Figure 12-1 : Block Diagram of BI DAQ Architecture

#### 12.1. Ethernet Network

#### • 2695-004 Network interface

- Laser diagnostics room connections to accelerator controls network. Usually an ethernet connection.
- o CNTRL defines networks connections. BI makes the network request.
- CNTRL shall provide the connection to the controls network
- o CNTRL and BI shall provide integration and testing of the laser room connection

Use of copper or optical fiber cables shall be determined based on the criticality of the unit, data rate requirement to operations, and the electronics' location relative to the nearest switch. For connections requiring 10Gbps Ethernet, the cable shall be single-mode optical fiber; otherwise, the cable shall be industry standard Cat6A.

Details are elaborated in BI Ethernet Networking Requirements [11].

# 12.2. Clock & Timing System Interface

# 2695-002 Beam Instrumentation Timing Interface (Interface to the LCLK timing distribution system. Instrumentation requirements of the timing system)

- CNTRL with the input of BI shall specify the interface to the timing system. BI shall provide BI specific requirements.
- CNTRL shall provide the timing signals and interface boards and/or FPGA logic for the interface.
- o CNTRL and BI shall provide integration and testing of the timing interface
- 2695-003 Timing and control signals
  - CNTRL and BI shall both define clocks signals for instrumentation in the laser room.
  - CNTRL shall provide the timing signals and interface boards, timing decoding, triggers, and/or FPGA logic for the interface
  - o CNTRL and BI shall provide integration and testing of the timing interface.

BI electronics shall be able to receive and decode global LCLK clock signals to track events in the timeline and machine states.

#### Table 12-2 : PIP-II Documentation for Global Clock System Interfaces

| Documents                                 | Number            |
|-------------------------------------------|-------------------|
| PIP-II Controls LCLK-II TRS               | ED0013498         |
| PIP-II Controls ACLK TRS                  | ED0013499         |
| PIP-II Timing Systems (ACLK and LCLK) ISD | ED0016516         |
| LCLK-II Clock Generator Docs              | PIP-II docDB 4959 |
| ACLK/LCLK Fiber Fanout Unit Docs          | PIP-II docDB 4962 |
| ACLK/LCLK Local Fanout Unit Docs          | PIP-II docDB 4965 |

Additionally, BI electronics shall be able to receive delayable event-based digital signals from standard timing modules, provided by Controls. These signals drive the trigger mechanism and timing logic to align both firmware and software modules with accelerator operations. This is critical for proper signal digitization, signal processing, and data acquisition.

#### Table 12-3 : PIP-II Documentation for Timing System Interfaces

| Documents                               | Number            |
|-----------------------------------------|-------------------|
| LCLK-II MFTU Docs                       | PIP-II docDB 4956 |
| PIP-II Timing System Assorted Documents | PIP-II docDB 5927 |

Details are elaborated in PIP-II BI DAQ Electronics TRS [10].

# 12.3. Motion Control Interfaces

Not Applicable.

# **13. Safety Systems Interface**

Safety System interfaces refers to interfaces and requirements needed for monitoring and interlocking components that impact E&SH limits.:

- 2740-001 BI's Linac Laser Lab Interface to SS's Linac LSS.
  - o BI shall interlock its Linac laser lab enclosure with SS's LSS enclosure hardware.
  - BI's laser lab enclosure will be equipped with SS's LSS enclosure personnel protection interlock equipment (gates, switches, control boxes, sirens, strobes, etc.).
  - o BI owns the Laser Lab Enclosure Interface. BI provides the laser lab enclosure.
  - SS supplies interlock permits. Supplies enclosure personnel protection equipment (gates, switches, control boxes, sirens, strobes, etc.) and their wiring.
  - o SS will install the LSS enclosure hardware into the laser lab.

The operation of a Class IV laser requires personnel safety measures, which interlock the Laser Rooms. Laserwire safety is controlled by interlock system. The primary monitored components of interlock system included laser room door switches, optical transport line vacuum switch, beamline laserwire station switches, and beamline vacuum switch.

By making the laser transport line a vacuum system, a vacuum safety interlock switch shall be utilized to cut power to the laser when vacuum is let up to atmosphere. This shall require that the roughing valve is a gate valve that can shut off the laser when closed, maintaining laser safety. Control release of laser light from laser hut is done via closing optical shutter or dropping of laser interlocks.

In addition, all safety procedures shall be based on the PIP2IT Laserwire Interlock System (Table 13-1) and shall be listed in the BI QC Plan [18].

| Documents                                    | Number         |
|----------------------------------------------|----------------|
| Laser Laboratory Design Guide                | ESH docDB 2098 |
| Laser ID #334                                | ESH docDB 4151 |
| Laser ID# 335                                | ESH docDB 4154 |
| PIP2 IT CMTF Laser Room Key Record           | ESH docDB 7330 |
| Fermilab Class 3B/4 Laser Standard Operating | ESH docDB 7454 |
| Procedure In CMTF Laser Room for GQuEST      |                |
| PIP2 IT Laser Lab Interlock Operation Manual | ESH docDB 7524 |

#### Table 13-1 : ESH Documentation for PIP2IT Laser Lab

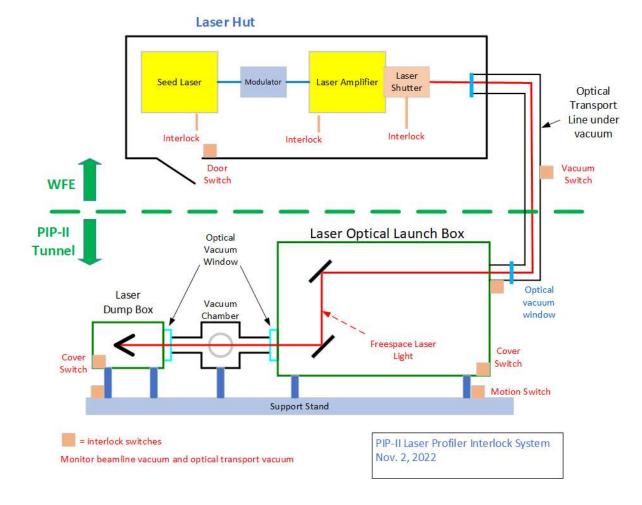



Figure 13-1 : PIP2IT Laserwire Interlock System