Fermilab **ENERGY** Office of Science

PIPII laserwire Laser System design

Parker Landon Jinhao Ruan PIP-II Beam Instrumentation Design Laser Wire final Review May. 7, 2024 A Partnership of: US/DOE India/DAE Italy/INFN UK/UKRI-STFC France/CEA, CNRS/IN2P3 Poland/WUST

Outline

- PIPII-IT laser system
- Pros and cons
- PIPII laser system redesign
 - Fiber portion
 - Free space portion
- Conclusion

PIPII-IT laser system

What we learned from PIPII-IT experience

- Pros
 - Very reliable system turn-key operation for most of the time
 - Be able to measure both spatial and temporal measurement
 - Simple transport system
- Cons
 - Need multiple seed/amplifier system will increase the cost dramatically
 - Only one pulse length available
 - Power is limited
 - Low signal to noise ratio
 - Lock-in technique helped a little bit but still very low signal to noise ratio
 - Very limited flexibility for future upgrade

What we want for PIPII

- Enough power to get good signal noise ratio
- Flexibility in terms of the pulse duration
 - optimize laser pulse overlap with H- beam pulses
- Flexibility in terms of the future upgrade option
- Lower the cost if possible

Fiber laser-free space laser hybrid system

PIPII laser option (hybrid version)

Requirement

- Wavelength between 1030nm and 1070nm. We're using 1064nm.
- Pulse width: at least 2 options
 - 2-3ps and 100ps FWHM
- Pattern: Programable
- Turn-key system
- Final energy: 100uJ at 10MHz,(about 10 μs long) the higher the better
 - Depends on signal-to-noise and total power on windows
- Max power of 150mJ/cm2 per 10 μs on optical windows
 - Only transport laser light while making beam measurements

Seed laser option

- Short pulse
 - Use PIPII-IT version pulse width 3-4ps(FWHM)
 - Specified design for longitudinal measurement
 - Fiber based pulse picker to get pattern if needed
- Long pulse
 - Implement design developed by Dave & Todd for Fermilab linac laser notcher
 - Start with CW source
 - Use modulator to pick up the pattern we wanted aiming for 100ps FWHM but programable from 50ps to 200ps FWHM

PIP-II – The Timing Problem for x/y-Spatial Measurements

- PIP-II will have a pseudorandom pulses down the linac
- Original plan required an optical switch to modulate a Master Oscillator (MO)
- Drawbacks
 - Phase drift from laser and pattern
 - EOM extinction only 20db
- Solution:
- Let's simplify the driver!

Long seed pulse generation

Concept

A Versatile and Highly Reliable Green-light Drive Laser for High Current Photoinjectors

S. Zhang[†]

Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, Virginia, 23692, USA

Long seed pulse generation

Concept

A Versatile and Highly Reliable Green-light Drive Laser for High Current Photoinjectors

S. Zhang[†]

Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, Virginia, 23692, USA

- We built two electronic driver prototypes last summer
- Completed preliminary tests at Fermilab, PriTel, Jlab, and Boston University

Long seed pulse generation

HMC722LP3E – Fast Rise Time Logic Gate

- 1. 50/50 RF Splitter
 - 1 V_{pp} input
 - Port S1 (50 m V_{pp}) to phase delay
 - Port S2 (50 m V_{pp}) to Fast NAND
- 2. DC-3.2 GHz Phase delay
 - Prototype 1 range of 75ps-250ps (FWHM)

- Prototype 2 range of ~30ps-200ps (FWHM)

- 3. Fast NAND Gate
 - Output with complement

Two negative inputs triggers a pulse Rise-time ~20ps Max output ~650 mV

Logic gate MATLAB diagrams:

Electronic Pulse (Not Amplified)

Measured at Fermilab: Infiniium DCA 86100A Wide-Bandwidth Oscilloscope

Drive System Test Block Diagram – Jlab Tests

Results from Jlab

- Limited setup at Jlab
- Borrowed RF amp (DC-300MhZ)
 - Limited our rise-time ~1 ns and added ringdown
 - Shortest electric pulse ~4ns

Results from Jlab

Electronic Signal

Not the best input, but DC-bias alleviates ringing

Optical Signal

Results from Jlab

Optical Signal

Electronic Signal

*With added a DC-bias of ~17 mA

FWHM ~200ps

Results from BU

Solution for faster pulses:

- New RF Amplifier
 - DC-12GHz bandwidth
 - Gain 20 dB
- Successful testing completed at BU

Electronic Signal (350 ps FWHM)

H301-1210 – JDS Uniphase Optical Modulator Driver

Drive Laser System Conclusions

x/y-spatial measurement previously had timing concerns; we have opted to utilize a gain-switched diode locked to the RF clock. This system meets our tunable 50-200ps pulse widths (FWHM), has phase control external to the laser, and the ability to produce pseudo-random pulse trains.

<u>Advantages</u>

- Cascading drivers allows RF pattern masking
- Pulse width/phase shift/reprate controls are decoupled from the laser

<u>Future</u>

- Less downtime and faster replacements
- Easy optimization via driver tunability
- Adaptability any rep-rate changes

Amplification chain

Amplification Chain

- Free space Portion
 - Northrup Grumann
 - Commercially available
 - Turn-key system
 - Easy for align
 - Been used for multiple system inside Fermilab already
 - Beam strip
 - NML drive laser
 - Upgrade option available to get more power

PIPII Laser Diagram

Some consideration for the laser system

- Pros
 - Versatile
 - Be able to deliver high signal noise measurement (see Randy's talk)
 - Cost effective
 - Future upgrade option
- Challenges
 - Need a beam transport structure (See Bob's Talk)
 - Optimizing laser pulse structure (under study)
 - Need some feedback for maintaining beam pointing when travel over long distance (see Randy's talk)

Conceptual Laser Hut Layout

Conclusion

- Based on the comment from PIPII laser wire review we modified our conceptual design for laser system
- New designed system is more versatile
- Newly transport system will be designed and installed
- New design will have higher signal-noise ration than old design
 - Optimizing laser structure to maximize signal

