Fermilab **BENERGY** Office of Science

Laser Transport Optics and Alignment

Randy Thurman-Keup PIP2 Laserwire Final Design Review May 2, 2024 A Partnership of: US/DOE India/DAE Italy/INFN UK/STFC-UKRI France/CEA, CNRS/IN2P3 Poland/WUST

Laserwire Beamline

Feedback Box Optics

R. Thurman-Keup | Laserwire Final Design Review | PIP-II

Mirror Box Optics

- Motorized stage to insert pickoff
 mirror
- Manual stage to adjust longitudinal position of downward laser trajectory during alignment
- Extra space for potential feedback or monitoring devices

May 2, 2024

Beamline Box Optics

• Detectors may only be there for commissioning

Dump Box

- Two located on horizontal and vertical exit windows
- Absorber with hole for photodiode
- Dump aperture to be same as optical vacuum viewport
- Dump interior painted black or black anodized
- Interior angle ~ 30 degrees to minimize back reflections
- Seal between dump box and optical viewport flange will be light-tight

- Transport line optical arrangement features a single optical waist generated by an initial collimating section in the laser room
- Each laserwire has an insertable pickoff mirror in the mirror box which leads to final focus lenses inside the beamline boxes

- A single waist but many pickoff points requires an optical evaluation of each laserwire location to ensure that the laser radius has the proper size at all points of interest
 - Laser size does not become too large (or too small) down the transport
 - Does not become too small on vacuum windows and optical elements
 - Is small enough at the H- intersection
 - Plan is ~5 mm

- Test of sensitivity of optics to ideal collimating lens
 - Control of optics via lens position, and stability of optics to small movements in lens position

14

Laser Transport Optics – Test

R. Thurman-Keup | Laserwire Final Design Review | PIP-II

Laser Transport Optics – Feedback

- Feedback will be implemented with a detector before the shield wall
 - 9 mm active area; sub-micron sensitivity
 - Approximately 35 m from laser room
 - Laser partially focused onto detector
- Ray tracing simulations

Thorlabs Lateral Effect Position Sensor

Study steering errors corresponding to deflections between +/- 6 mm
 the end of linac
 HB650_4 Ver Scan Beamline
 HB650_4 Ver

R. Thurman-Keup | Laserwire Final Design Review | PIP-II

Installation and Alignment – Laser Room

- Install transport pipe and mirror housing in laser room structure
- Align transport pipe to nominal location relative to beam (Alignment Crew)
- Install target at end of linac and align to nominal location relative to beam (Alignment Crew)
- Setup laser systems on optical table
- Align and focus green laser through complete transport line

Installation and Alignment – Transport Line

- Install shield wall support and align to green laser
- Install feedback box and align to green laser
- Install mirror boxes
 - Align to nominal location relative to beam (Alignment Crew)
 - Verify transverse alignment with green laser
- Install pipe hangers and align to green laser

Installation and Alignment – Beamline Box Mount

- Install mirror box mirror with longitudinal position adjustment
 - Align mirror with alignment laser
- Install beamline alignment fixture
 - Designed as a sparse replica of actual beamline box
 - Allows alignment without bulk of actual box
- Adjust mounting to align vacuum flanges
- Adjust downward alignment laser trajectory to intercept both targets

R. Thurman-Keup | Laserwire Final Design Review | PIP-II

Installation and Alignment – Beamline Box Optics

- Alignment of beamline box optics will happen in the laser lab
- Utilizes three elements
 - An alignment plate that replicates the beamline box mounting plate
 - A laser aligned with the alignment plate to replicate the trajectory from the mirror box
 - A target also aligned with the alignment plate and positioned at the design location of the beamline
- The aligned optics box can then be mounted on the beamline box mount

Summary

- Have a design for the transport optics
 - Have considered control of the laser
 - Have tested the transport over 130 m
- Have a procedure for alignment of laser transport and beamline optics
 - Transport alignment is coincident with installation of transport line
 - Beamline box mounting alignment is done after installation of warm units
 - Beamline box optics alignment is done in laser room

Backup Slides

Laserwire Locations

- Twelve + one laserwire stations in the PIP2 Linac proper (last not shown below)
- The laser room is upstream of the H- source which is at 0 m

Laser Transport Optics – Feedback

R. Thurman-Keup | Laserwire Final Design Review | PIP-II

Laser Transport Optics – Feedback

Loss of laser beam from steering errors

