

Signal Performance

Sajini Wijethunga and Randy Thurman-Keup PIP2 Laserwire Final Design Review May 2, 2024 A Partnership of: US/DOE India/DAE Italy/INFN UK/STFC-UKRI France/CEA, CNRS/IN2P3 Poland/WUST

Signal Collection

- Stripped electrons are bent by magnetic field and 'collected' by faraday cup
- Magnet has two pole pairs
 - One downstream to collect the electrons
 - One upstream to correct the field for the H- beam

Simulations

- We have used a mix of Matlab, CST, and GEANT4 to accomplish most of the simulation features needed
- H- Stripping calculation (Matlab)
 - Overlaps the laser with the H- beam
 - Laser and H- beam are fully specified in 6-d phase space (some constraints with laser)
 - Time evolution of stripping within fixed voxel space around interaction region
 - Depletion of H- beam is included
 - Laser is not depleted as laser has significantly higher density than H- beam
 - Stripping cross section used in each voxel
 - Number of stripped electrons in each voxel at each time step are stored
- Stripped electron tracking (Matlab + CST)
 - Full relativistic 3-d tracking of particles in arbitrary E and B fields using adaptive 4th order Runge-Kutta solver
 - E and B fields of H- bunch generated separately and given time dependence during tracking
 - No transverse motion of bunch
 - E and B fields of external sources typically generated with CST model
- Tracking to and through faraday cup with GEANT4 to determine impacts to the signal such as secondary emission and backscattering of the primary electrons

Electron Generation

 Particles generated via Matlab code and tracked via Matlab code through the CSTgenerated magnetic field

Electron Generation

- Laser pulse length is 50 ps rms (this simulation)
- Bunch length goes from 200 ps to 5 ps rms
- Here are plots of signal for each laserwire with laser along X and relevant bunch sizes

£

Stripped Charge

Ô

Magnet Design

- Magnet was modeled in CST
- Angled pole pieces intended to produce quadrupole field to keep electrons from spreading transversely

Magnet Design

Electron Trajectories

• Check for clearance throughout design range of laserwire = ±15 mm

End of Linac: HB650-4

Electron Trajectories

• Check for clearance throughout design range of laserwire = ±15 mm

After HWR (first cryomodule)

Electron Trajectories

Check for clearance throughout design range of laserwire = ±15 mm
MEBT with additional Quadrupole (not yet in CAD model)

FARADAY CUP STUDIES

Electron Tracking

- H⁻ beam energy at 1st laser wire scanner ~ 2.1 MeV, γ = 1.00226
- H⁻ beam energy at last laser wire scanner ~ 800 MeV, γ = 1.8868

 E_k of the releasing electrons $\approx 1 \text{ keV}$ E_k of the releasing electrons $\approx 450 \text{ keV}$

At E_k = 450 keV, the electron stopping distance for Stainless steel is ~ 0.25 mm.

Geant4: Advanced Monte Carlo Simulation Toolkit

- Geant4 is an object-oriented toolkit designed for simulating the complex interactions of particles with matter
- It offers a wide range of physics models organized into physics lists ۰
- For electromagnetic (EM) physics, it supports both standard EM processes (above 1 • keV) and low-energy EM processes (down to ~250 eV for electrons and gamma rays)
- This study utilizes "G4EmStandardPhysics option4," which incorporates a ٠ comprehensive set of models for key interactions such as bremsstrahlung, pair production, Compton scattering, and ionization
- This option strikes a balance between precision and computational efficiency

Electron Tracking for 450 keV electrons

Impacted

- All the particles were impacted
- None of the particles transmitted through the cup

Reflected

- All the reflected particles are primary particles
- Backscattering coefficient is ~15%

Electron Tracking for 450 keV electrons

Electron Tracking for 1 keV electrons

Reflected

- All the reflected particles are primary particles
- Backscattering coefficient is ~20%
- None of the neutral particles got reflected

Electron Tracking

Electron collection efficiency across the Faraday cup

50 mm

Electron beam position [mm]	450 keV		1 keV	
	Impacted [%]	Reflected [%]	Impacted [%]	Reflected [%]
-7.5	100	15.58±2.53	99.49	21.08±2.18
-5	100	14.98±2.58	99.48	20.47±2.21
-2.5	100	14.98±2.58	99.47	19.86±2.24
0	100	14.88±2.59	99.46	19.47±2.27
+2.5	100	14.63±2.61	99.58	19.10±2.28
+5	100	14.76±2.60	99.65	19.39±2.27
+7.5	100	14.58±2.62	99.65	18.78±2.31
+10	100	14.61±2.62	99.56	17.96±2.36
+12.5	100	14.72±2.63	99.66	17.88±2.36
+15	100	14.77±2.60	99.58	16.74±2.44

Summary

- We have simulated the generation and collection of electrons using multiple simulation techniques
- Under various space constraints, we have attempted to optimize the vacuum chamber and the magnets to intercept all the electrons over a transverse laser interaction range of ±15 mm
- We are utilizing GEANT4 to determine the collection efficiency of the intercepted electrons as a function of energy and source position

Backup Slides

Laserwire Locations

- Twelve + one laserwire stations in the PIP2 Linac proper (last not shown below)
- The laser room is upstream of the H- source which is at 0 m

Electron Generation

• PIP2IT vs PIP2

Total # of stripped electrons = 7.699607e+02 Fraction of stripped electrons = 4.0092e-06 Energy/bunch @ lens (CW / Beam On / Single Pulse / Single Bunch) = 0.57693 / 5.7693e-05 / 2.8847e-06 / 3.5503e-09 J/cm^2 Energy/bunch @ window (CW / Beam On / Single Pulse / Single Bunch) = 2.3077 / 0.00023077 / 1.1539e-05 / 1.4201e-08 J/cm^2

Total # of stripped electrons = 1.415507e+06 Fraction of stripped electrons = 0.0073707 Energy/bunch @ lens (CW / Beam On / Single Pulse / Single Bunch) = 9457.882 / 0.94579 / 0.047289 / 5.8202e-05 J/cm^2 Energy/bunch @ window (CW / Beam On / Single Pulse / Single Bunch) = 37831.4297 / 3.7831 / 0.18916 / 0.00023281 J/cm^2

Electron Generation

S. Wijethunga & R. Thurman-Keup | Laserwire Final Design Review | PIP-II