🗖 🛟 Fermilab

PIP-II DAQ/XRM First Article Acceptance Test Plan

Overview

This Acceptance Test Plan (ATP) is developed to validate the XRM device's compliance with the technical requirements specified in document ED0013500-V2. The test plan ensures that all specifications, functionality, and performance requirements are met before deployment in the PIP-II accelerator environment.

Objectives

- 1. Verify the XRM meets all physical, environmental, and electrical specifications.
- 2. Verify the XRM performs under the expected operational conditions.
- 3. Verify the XRM meets all functional and software requirements outlined.
- 4. Verify the XRM interfaces comply with the standards for connectivity and synchronization.
- 5. Assess the XRM documentation, usability, and solicit stakeholder feedback.

Resources Required

- 1. XRM, new in box from vendor, with complete documentation package.
- 2. Test computer with USB and network access.
- 3. Appropriate power and signal harness cabling.
- 4. Appropriate power and signal harness test circuitry.
- 5. Four or more function generator channels (Minimum 10MHz)
- 6. Four or more oscilloscope readback channels (Minimum 10MHz)
- 7. Vendor provided software suite.
- 8. Fermilab provided testing suite.
- 9. Surface for drop testing.
- 10. Environmental chamber for HALT testing.
- 11. (Optional) Externally validated compliance test report.

Acceptance Criteria

Each test category has specific pass/fail criteria detailed in the following sections. The XRM must meet or exceed all specified thresholds to pass.

Deliverables

- 1. Detailed test reports for each category
- 2. Issues log with resolutions
- 3. Final acceptance sign-off sheet
- 4. Base test procedure for all XRM's delivered

First Article Acceptance Test Procedure

- 1. Documentation Review
 - 1.1. Performance Agreement

□ Has the Performance Agreement been reviewed and agreed upon by all parties?

- 1.2. Vendor supplied documentation
 - 1.2.1. Reference the vendor supplied installation and maintenance procedure
 - \Box Does the procedure contain sufficient information for installation?
 - \Box Does the procedure contain relevant safety information?
 - □ Does the documentation require any routine maintenance?
 - 1.2.2. Reference the vendor supplied user manual
 - □ Does the manual contain sufficient information to log into the device?
 - \Box Does the manual contain an overview of all accessible PV's and settings?
 - \Box Does the manual contain an overview of the vendor supplied engineering page?
 - \Box Does the manual have comprehensive electrical specifications for all modules?
- 2. Physical, Environmental, and Electrical Compliance
 - 2.1. Environmental Verification (Part 1)
 - 2.1.1. With the XRM removed from packaging, drop the unit from a height of 80mm onto a wooden surface from all sides. Utilize blocking to ensure rack flanges are not struck.□ Is the XRM free from mechanical failures?
 - 2.2. Form Factor / Usability Verification
 - 2.2.1. If the order quantity was greater than ten, observe the XRM.
 - \Box Is the XRM blue?
 - □ Are vendor and Fermilab markings clearly present?
 - 2.2.2. Install the XRM in the EIA-310 compliant 19" test fixture.
 - \Box Is the XRM of correct depth (<27")?
 - □ Does the XRM physically install without interference?
 - \Box Are all screw holes in the correct location?
 - 2.2.3. Connect the PPS, CLK, CYC, and PMT lines to the function generator.
 - \Box Are the connectors accessible?
 - \Box Are the connectors clearly identifiable?
 - \Box Do all connectors mate correctly?
 - 2.2.4. Connect the DB-37 and coaxial connectors to the signal harness.
 - \Box Are the connectors accessible?
 - \Box Are the connectors clearly identified?
 - \Box Do all connectors mate correctly?
 - 2.2.5. Connect the power, diagnostic, and internet ports.
 - \Box Are the connectors accessible?

 \Box Are the connectors clearly identified?

 \Box Do all connectors mate correctly?

- \Box Is a fuse present near the power input port?
- 2.2.6. Rapidly power cycle the device 5 times using the switch on the back of the unit. Then rapidly press the reset switch (for less than 1s) on the front of the unit 5 times.□ Does the unit power on successfully?
- 2.2.7. Hold the reset switch on the front of the unit for 5 seconds. Does the unit turn off?

Power off the device using the switch on the back of the unit for the next step.

- 2.3. Electrical Verification (Part 1)
 - $\label{eq:2.3.1.} For each module, reference the `partial schematic' provided by the vendor.$
 - \Box Are the correct voltage suppression components present?
 - □ Are the components rated for the specified operating range?
 - 2.3.2. For each module, reference the specifications provided by the vendor.

 Do the ADC/DAC/GPIO performance specifications match Fermilab specifications?

 Is the pinout compliant with those specified in the requirements document?

 Are the ports clearly labeled for their function?

 Is the power conversion stage UL listed, and Category II rated?
 - 2.3.3. Measure the chassis between exposed metal, and the grounding terminal \Box Is the XRM chassis connected to ground with an impedance < 1 Ω ?
 - 2.3.4. Other electrical (EMI/Discharge) tests must be completed by an independent party.
- 2.4. Environmental Verification (Part 2)
 - 2.4.1. With the XRM powered on, observe the direction of fan airflow. \Box Does the air move from the front to the back of the unit?
 - 2.4.2. Place the connected XRM in a 40°C environmental chamber for a period of one hour.

 Does the unit remain operational (the green light is on, and software is responsive).

 Does the XRM display zero temperature alarms through software?

Power on the XRM in the environmental chamber for the remainder of this testing.

3. Functional Validation

The following tests are to be performed after 1 hour at 40°C, and after 48 hours at 40°C.

- 3.1. Vendor Software Verification
 - 3.1.1. With the XRM connected to the network, observe the startup sequence.
 - □ Does the XRM boot automatically to the correct configuration?
 - \Box Does the XRM load corresponding scripts, and launch its IOC?

 \Box Is the XRM accessible immediately via the diagnostic port?

 \Box Is the XRM accessible to other network devices within 5 minutes of startup? \Box Are the network signal indicators active?

- 3.1.2. Connect to the XRM utilizing the vendor provided engineering display.
 - \Box Are basic PV's accessible?
 - \Box Are basic PV's correctly identified?
 - \Box Are basic PV's modifiable without system re-boot?
- 3.2. Interim Electrical Validation (Part 2)
 - 3.2.1. Configure the signal harness per the following specifications:

	Signal Source		Freq (Hz)	Range	Term. (Ω)	
Signal Gen.	PPS	CH1	1	5V	50R	
	CYC Trig.	СНЗ	20	5V	50R	
	ADC Clk.	CH2	2M	5V	50R	
	ADC Inp.	CH4	See Table	See Table	~1M	
Scope	Permit CH1		-	5V	50R	
	GPIO	CH4	See Table	5V	50R	
	DAC	CH2	See Table	See Table	1K	
	ADC Inp.	СНЗ	See Table	See Table	1M	

3.2.2. For each module (Row), configure the harness for the following:

Unit			Configuration				Test Scenario		
Туре	Rate (Sps)	Range	Voltage	Rate (Sps)	Window	Rep Rate	SQ. (Width)	SIN (Hz)	SIN (Hz)
GPIO	1M	5V (TTL)	5V (TTL)	100K Int.	Cont.	20Hz	10ms	-	-
Relay	20	5V	5V	1	Cont.	20Hz	250ms	-	-
DAC	100K	±10V	±8V	100K Int.	Cont.	20Hz	10ms	20Hz	5760
ADC	100K	±10V	±8V	100K Int.	Cont.	20Hz	10ms	5760	60K
ADC	100K	±5V	±4V	100K Int.	Cont.	20Hz	10ms	5760	60K
ADC	100K	±2.5V	±2V	100K Int.	Cont.	20Hz	10ms	5760	60K
ADC	2M	±10V	±8V	2M Ext.	1ms	20Hz	10uS	300K	600K
ADC	2M	±2.5V	±4V	2M Ext.	1ms	20Hz	10uS	300К	600K
ADC	2M	±1V	±2V	2M Ext.	1ms	20Hz	10uS	300K	600K

- 3.2.3. Check the PPS, Cycle Trigger, Clock, and Permit Signals are active
 - \Box Does the Cycle Trigger indicator on the front of the unit blink?
 - \Box Do PV's from each device begin updating on a per-cycle basis?
 - \Box Does the XRM's timestamp match wall time within 1uS?

Office of

- 3.2.4. Run the square wave validation (Scenario 1).
 - □ Does the module respond with a waveform of appropriate voltage and rate?
 - □ Does the unit respond at the appropriate update rate (continuous or 10ms window)
- 3.2.5. Run the sine wave validation (Scenario 2).
 - \Box Does the module respond with a waveform of appropriate voltage and rate?
 - □ Does the unit respond at the appropriate update rate (continuous or 10ms window)
- 3.2.6. Run the sine wave validation (Scenario 3).
 - NOTE! The voltage in this scenario should be < half the voltage recorded above.
 - \Box Does the module respond with a waveform of appropriate voltage and rate?
 - □ Does the unit respond at the appropriate update rate (continuous or 10ms window)
- 3.3. Software Validation

The following requires a full software test suite, to be finalized after vendor selection.

- 3.3.1. Load the Fermilab base configuration script for the XRM, and test for the following:
 - 3.3.1.1. Waveform readback
 - 3.3.1.2. Waveform playout
 - 3.3.1.3. Full bandwidth readback
 - 3.3.1.4. GPIO testing
 - 3.3.1.5. Permit testing
 - 3.3.1.6. Sample and hold testing
 - 3.3.1.7. Analytic variable testing
 - 3.3.1.8. Postmortem testing
 - 3.3.1.9. Multicast testing
 - 3.3.1.10. Save restore functionality
- 4. Stakeholder Review
 - 4.1. Review the test results above with designated stakeholders.
 - \Box Are the test results satisfactory for their given application?
 - \Box Do they wish to perform additional signal validation, with dedicated instruments?
 - \Box If so, provide the test unit to the external party. Testing to be completed in under 1 week.
 - 4.2. Formally record stakeholder approval in line with the test results for future reference.

