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This study is a continuation of previous efforts to demonstrate the possibility of electron beam echo generation
in the IOTA ring. Transverse beam echoes are conventionally produced by a dipole kick followed by a single
quadrupole kick. We seek to use multiple quadrupole kicks over successive turns to generate an echo larger
than that from a single kick. We use beam echo theory and simulations to model and predict the expected
echo generated by multiple quadrupole kicks. We also run simulated scans over various parameters relevant
to the echo to optimize the echo amplitude, including delay time, quadrupole strength, tune split, and pulse
number. Effects due to quantum excitation and synchrotron damping (which are particularly relevant with
electrons) were also considered in simulation. Results indicate that given sufficient quadrupole kick strength,
we should expect to be able to measure electron beam echoes in the IOTA ring.

I. INTRODUCTION

The echo phenomenon has been observed in several
areas of physics, not just particle beams. In fact, the dis-
covery of echoes generally well precedes the observation
of beam echoes. Spin echoes were first observed in 1950
by Hahn,1 succeeded by the observation of photon echoes
in 1964,2 and the observation of plasma echoes in 1968.3

Echoes are generated by the application of a series of
two “pulses” to the system. Depending on the type of
system being observed, the term “pulse” will carry a dif-
ferent meaning. In the case of the spin echoes, pulses are
applied in the form of intense radiofrequency power; for
photon echoes, intense light pulses are applied, and for
plasma echoes, electric fields. Similarly, the term “echo”
carries a contextual meaning. For spin echoes, the echo
is the reorienting of the spins in a common direction. For
the photon echo this is a spontaneous burst of radiation,
and for the plasma the echo is spatial. But in any case,
the two calculated pulses result in the production of a
spontaneous “echo,” made possible by the intricate mem-
ory of phase space of the system.

The phenomenon of beam echoes is relatively new,
though they were first observed more than three decades
ago.4 Analogous to the above cases, beam echoes are
characteristically produced by the application of two
magnetic “kicks” (i.e., pulses) to a beam of charged par-
ticles. The first kick is a dipole kick, initiating an ini-
tially coherent response that dies out due to phase mix-
ing. Some time later, a quadrupole kick is applied, and
the echo signal will follow. The echo here is a re-cohering
of the beam to produce a sudden and pronounced ampli-
fication in the centroid signal. An example of a simulated
echo is in Fig. 1.

Though an interesting phenomenon in its own right,
the beam echo has useful properties relevant for acceler-
ator science. Namely, beam echoes are particularly sensi-
tive to diffusion, which is a measure of emittance growth.
Diffusion measured in the traditional way takes on the or-
der of hours; using the method of echoes would reduce
the time several orders of magnitude. A quick measure of
emittance growth will offer a quick test of beam stability.

FIG. 1. Example of a beam echo. Note the initial dipole
kick, followed by the quadrupole kick, followed by the echo
signal. See also that the quadrupole kick does not affect the
beam centroid. The y-axis is the centroid signal relative to
the dipole kick.

If this method is successful, it can be extended to new
intensity frontier hadron machines, such as the foreseen
PIP-III rapid cycling synchrotron. Beyond beam stabil-
ity measurements, echoes would allow the determination
of better lattice configurations and the measurement of
space-charge effects. A spectral analysis of the echo pulse
can also be used to measure the tune shift from nonlinear
forces in a synchrotron ring. Hence, beam echoes present
themselves as a useful diagnostic tool and measurement
device for the future of accelerator science.

Here at Fermilab, we are looking to use the Integral
Optics Test Accelerator (IOTA) (see Fig. 2) to generate
transverse electron beam echoes. Electron beam echoes
would be novel, as it has been previously thought that the
echo effect could not be observed in electron storage rings
because of synchrotron radiation resulting in very strong
diffusion. We seek to show that electron beam echoes are
possible, so long as the decoherence time following the
dipole kick is much shorter than the radiation damping
time.
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FIG. 2. Schematic of the IOTA machine. Note the dipole
and quadrupole magnets for bending and focusing the beam,
respectively, as well as nonlinear elements (sextupoles and
octupoles) for beam correction. The sequence of elements in
an accelerator or synchrotron is called a lattice.

The research in this paper primarily serves to address
some issues presented with the generation of electron
beam echoes in IOTA. One such issue deals with the
quadrupole kicker strength. Owing to the fact that the
quadrupole kicker strength is too weak at present to gen-
erate observable echoes, we seek to show that a larger
signal can be generated by applying multiple quadrupole
kicks over several turns. We also seek to optimize the
number of kicks and the turn spacing between kicks in
order to maximize the echo amplitude. Further, we con-
sider the dependence upon quadrupole kick delay time
following the initial dipole kick, quadrupole strength, and
tune split, as well as effects from synchrotron damping
and quantum excitation.

II. BEAM ECHO THEORY

Though a rigorous analysis of beam echo theory is out-
side the scope of this paper (more thorough treatments
can be found elsewhere),5,6 it will be useful to introduce
some basics to lay a foundation for the motivation of this
research. The brief introduction to linear beam echo the-
ory in Section IIA is adapted from Chao5 and the work
on multiple quadrupole kicks in Section II B is from Sen.7

A. Linear echo theory

Suppose we initially have a charged particle beam with
initial emittance J0, a Gaussian distribution in phase
space resulting in an exponential distribution in the ac-
tion variable J

ψ0(J) =
1

2πJ0
e−J/J0 , (1)

and a betatron oscillation frequency that is amplitude
dependent,

ω(J) = ω0 + ω′J, (2)

where ω0 is the nominal betatron frequency and ω′ is
the betatron detuning parameter. At time t = 0 we kick
the beam with a dipole kicker to an amplitude βθ, where
β is the beta function at the dipole kicker and θ is the
angle of deflection of the beam. The beam will then deco-
here due to phase mixing (i.e., different particles having
slightly different oscillation frequencies). Once the beam
has completely decohered and the centroid signal is zero,
a quadrupole kick of strength q (defined q ≡ βQ/f , where
βQ is the beta function at the quadrupole kicker and f
is the focal length of the quadrupole) is applied, say at
time t = τ . This kick does not disrupt the beam centroid
since the net force on the particles in the transverse plane
is zero. Then the echo signal can be analytically repre-
sented as

〈x〉(t) =
βθqω′J0τ

(1 + ξ2)3/2
sin(Φ + 3 arctan(ξ)) (3)

ξ = ω′J0(t− 2τ), (4)
Φ = ω0(t− 2τ). (5)

The time-dependent amplitude can thus be described by
the prefactor

〈x〉amp(t) =
βθqω′J0τ

(1 + ξ2)3/2
(6)

Given the factor of 1/(1 + ξ2)3/2, the amplitude will be
small unless ξ2 is small. Hence we expect to observe the
echo greatest at ξ = 0, or t = 2τ . This is a critical
observation—a characteristic feature of the beam echo—
that the centroid signal will recohere briefly at a time
t = 2τ following the initial dipole kick. (Note that Eq. 3
represents only the echo signal; the amplification in the
centroid signal due to the dipole kick that precedes is not
modeled in this equation.)

B. Multiple quadrupole kicks

Conventionally beam echoes are made by only two
pulses: a dipole kick followed by a quadrupole kick. How-
ever, with multiple quadrupole kicks it is possible to gen-
erate a larger echo than with only a single quadrupole
kick. We can extend the ideas in Section IIA to echo
generation using multiple quadrupole kicks. Once again,
we will only utilize the result; a full treatment can be
found in the references.7 The echo signal from Nq addi-
tional kicks in the linear regime can be expressed by

〈x〉(t) = βθω′J0

Nq∑
m=0

qm(τ +mTrev)
sin(Φm + 3 arctan(ξm))

(1 + ξ2m)3/2
,

(7)
ξm = ω′J0(t− 2(τ +mTrev)), (8)

Φm = ω0(t− 2(τ +mTrev)) (9)

where m indexes the kick number, Trev is the revolution
period of the synchrotron, and the other variables are the
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same as in Section IIA. This formalism allows for varying
kick strengths qm, but in this paper we will assume a
constant kick strength qm = q for all m. Under this
assumption, Eq. 7 reduces to Eq. 3 when Nq = 0 (that
is, one quadrupole kick), as expected.

C. Optimize Nq

By making use of Eq. 7, we can optimize the parame-
ter Nq to maximize the echo. We used Mathematica to
model the function numerically for various Nq. In Fig.
3 are models of echoes generated from Nq = 0, 1, 2, 3,
whose amplitudes are relative to the max amplitude of a
single quadrupole kick, βθqω′J0τ . What we find is that a
value ofNq = 1, or two total consecutive-turn quadrupole
kicks, generates the largest amplitude echo, with an im-
provement in amplitude of 57%. The model generated
for Nq = 2 is comparable with a relative amplitude in-
crease of 51%. The model for Nq = 3 is included to show
that the benefits of additional kicks dies out quickly; here
the relative amplitude decreases by 8.8%. This model is
limited in insight since it is built only upon linear beam
echo theory, but it will serve to give us an idea how many
quadrupole kicks to apply in simulation to maximize the
echo.

D. Quadrupole kick strength theory

Nonlinear theory of beam echoes predicts an amplitude
dependence on the quadrupole strength q.6 The theoret-
ical model for small amplitude dipole kicks βθ � σ and
quadrupole kicks q � 1 (which is usually well satisfied
in practice), where σ is the rms beam size, is straight-
forward. The maximum amplitude relative to the ini-
tial dipole kick Q is predicted to reach a maximum of
Qmax ≈ 0.38. The theoretical relationship between Q
and q in these approximations is described by the equa-
tion

Q = qτTrevω
′J

[
1 +

1

2

(
βkθ

σ

)2
]
. (10)

In this equation, τ is assumed to be measured in turns
around the ring, though in formal theory τ has dimen-
sions of time (hence the factor of Trev, the synchrotron
revolution time). For IOTA, the parameters Trev = 133.3
ns and J = 30 nm are known, and we will assume here
a delay time of τ = 400 turns. Since this theory as-
sumes a small dipole kick, we will be using it only as a
very rough guide. We will assume a dipole kick of 22σ
in these calculations, as well as in the following sections.
To compute the optimal quadrupole kick strength qopt,
we need only calculate ω′, the detuning parameter, which
can be described analytically as

ω′ = 2πfrev
∆νrms

J
(11)

where ∆νrms is the rms tune shift (ν0−νσ)rms between a
particle traveling the nominal path with that of a parti-
cle traveling 1 rms beam size σ off the nominal path, and
frev is the revolution frequency of the synchrotron. For
IOTA, frev = 7500.6 KHz. The rms tune shift was cal-
culated using the MADX DYNAP module and was found
to be (ν0 − νσ)rms = 3.7 × 10−5. Calculating ω′ is now
straightforward and yields ω′ = 5.8×1010 (s-m)−1. From
these results, we obtain

qopt = 0.017.

It is worth making a note about the choice of dipole
kick strength at 22σ. A smaller dipole kick would have
been applied in practice if not for the fact that the deco-
herence time of the beam is quite sensitive to the dipole
kick size. Gabriel shows in similar simulations that the
decoherence time decreases with increased dipole kick
size, and we find comparable behavior.8 A longer deco-
herence time thus implies a longer delay time τ , since the
quadrupole kick may only be applied once the centroid
signal is zero. If we choose a longer delay time, how-
ever, problems arise from synchrotron radiation effects—
which become more relevant at longer time scales—and
will severely interfere with observation of electron beam
echoes. These limitations considered, we have elected to
use a larger dipole kick to keep the delay time short.

As already mentioned, the usefulness of this result is
limited, as we have grossly deviated from the small dipole
kick assumption of Eq. 10, but it will nevertheless serve
as a rough guide and comparison as we scan q in Section
III B.

III. SIMULATION

Following the modeling done using one-dimensional
linear beam echo theory, we ran a series of simula-
tions to more accurately identify the optimal sequence of
quadrupole kicks, as well as to optimize various param-
eters relevant to echo production. Namely, we run scans
over quadrupole kick strength, delay time, and tune split.
To do the simulations, we use Methodological Accelera-
tor Design (MADX) with a sequence code that models
the lattice in IOTA. To analyze the MADX simulations,
we use code written in C++, which outputs various data
about the echo—most importantly, the maximum ampli-
tude.

In Sections III C and IIID we run scans over the de-
lay time τ and tune split νy − νx, respectively. Among
other parameters, we have chosen to keep the quadrupole
kick strength q = 0.0014 constant. This choice of q
was motivated by the experimental voltage limitations of
the quadrupole kicker in IOTA. The currently achievable
quadrupole voltage is expected at 140 V (q = 0.0007).
Though no noticeable echo signal is observable at such
a small voltage, simulations indicate that echoes can be
observable if the quadrupole voltage increases by a factor
of 2 (i.e., 280 V). Hence, our choice of q = 0.0014.
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FIG. 3. Predictions of echoes for Nq = 0, 1, 2, 3 (left to right), respectively, using linear beam echo theory. The y-axis is the
echo amplitude relative to the Nq = 0 echo maximum amplitude, 〈x〉/(βθqω′J0τ); the x-axis is the turn number. We have
arbitrarily chosen a delay time of τ = 1000 turns. The orange curves trace the amplitude contributions from each kick, which
are all identical in shape since each kick is equal; they are only separated by a shift of one turn. Note that Nq = 1 yields the
greatest echo amplitude, though Nq = 2 is a close second.

In these sections, we have also chosen to plot the echo
signal above the background signal of the machine. We
use the term “background signal” to denote centroid noise
in the absence of any quadrupole kick. The choice to plot
the subtracted echo signal (that is, the echo signal with
background noise subtracted) was due to the small echo
signal generated by a small quadrupole strength q. Note
in other sections with larger q this was not necessary.

A. Quadrupole kick sequence

In the linear approximation modeling in Section IIC,
we assume additional quadrupole kicks are applied on
successive turns. We need not restrict ourselves to this
case, as we have the experimental liberty to delay the
application of additional kicks by an integer number of
turns. Previous work was done by Li that describes the
sensitivity of the pulse sequence to the fractional tune of
the machine.9 This has to do with the “interplay between
the timing of the pulse and the phase advance of the par-
ticles,” as Li puts it. In other words, we would like to
pulse the particles after the phase advance of the parti-
cles is an integer multiple of 2π, or very close. Given the
fractional tune of IOTA at 0.3 (νx,y = 5.3), we have cho-
sen to narrow our search to sequences with pulse delays
of 3 and 10 turns, in addition to consecutive turn pulses.

To be consistent with Li, we have chosen to represent
a turn with a quadrupole kick (of positive polarity) with
a p, and a turn with no kick with an x. Our convention,
then, is to represent consecutive kicks with pp . . . p, kicks
that pulse every three turns with (pxx)Nq

p, and every

ten turns with (px9)Nq
p.

In simulation we find general agreement with the the-
oretical linear models in Section IIC. From Fig. 4 we see
that for the pp . . . p and (px9)Nq

p sequences, two total
quadrupole kicks (Nq = 1) yields the greatest maximum
relative amplitude. For the consecutive sequence pp we
achieve an increase in maximum relative amplitude com-
pared to the single kick of 11.4%; for six kicks every third
turn (pxx)5p an increase of 17.6%; and for two kicks sep-
arated by ten turns px9p, a 20.8% increase. I qualify this
statement by noting that there is some slight variation in
optimal Nq that is dependent upon other factors like de-
lay time τ and tune split. In some cases, Nq = 2 proved
to be optimal in the (px9)Nq

p or consecutive-turn pulse
sequence, but only marginally. Interestingly, however, for
the (pxx)Nqp sequence, we find that the maximum echo
amplitude almost always occurs at Nq = 4 or Nq = 5.

The maximum relative amplitude of the single
quadrupole kick echo is 0.518, 36% greater than the pre-
dicted maximum relative amplitude from nonlinear the-
ory Qmax ≈ 0.38. We should remind the reader, however,
that this prediction assumes small quadrupole and dipole
kicks, which we have not assumed in this section. We will
apply small q in Sections III C and IIID.

Of the sequences studied, we find the “ten sequence”
(px9)Nq

p to yield the greatest amplitude echo at a rela-
tive maximum amplitude of 0.63 for Nq = 1. In the sec-
tions below, we have selected this sequence for analysis,
unless otherwise noted, and we will compare its efficacy
to that of only a single quadrupole kick.
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FIG. 4. Plot showing maximum relative echo amplitude from
a simulated scan of three different sequences. The amplitude
in this case is relative to the initial dipole kick. A delay
time of τ = 400 turns, dipole kick of 22σ, and tune split
νy−νx = 0.003. The strength q of the quad kicker was varied
to search for the maximum kick.

B. Scan over quadrupole strength q

A scan over the quadrupole strength q was done fol-
lowing the identification of the ten sequence as the best
candidate (see Fig. 5). In these scans we have kept the
tune split νy − νx = 0.003 and the delay time τ = 400
turns constant. We did three scans: The first two are
scans over two pulses, ten turns apart, one considering
the effects due to quantum excitation and synchrotron
damping, and another omitting the consideration of these
effects. (These effects can be easily turned on or off in
simulation by using the DAMP and QUANTUM attributes in
MADX.) The third curve is a scan over q of only a single
pulse. We find that q = 0.047 maximizes the ampli-
tude for the blue curve (two pulses, ten turn separation)
yielding a relative maximum amplitude of 0.625, a 20.6%
improvement over the single kick whose maximum rela-
tive amplitude is 0.518 for q = 0.049. We note that these
“optimal” quadrupole strengths are ∼ 2.9 times larger
than the predicted qopt in Section IID. We attribute this
to the large dipole kick at 22σ, where the theory ap-
plied above presupposes a small dipole kick. We also see
rough agreement between the two blue plots—the curve
that considers quantum excitation and damping effects
generally traces the curve that does not consider these
effects, even though the fine scale in Fig. 5 makes it look
less obvious.

C. Scan over delay time

We also ran a scan over the delay time τ (Fig. 6).
Here we have chosen to keep q = 0.0014 constant, so as
to work in the q � 1 regime (see the earlier discussion in

FIG. 5. Plots showing simulated scan over quadrupole
strength q. The top plot is a more broad scan with courser
scales. The bottom plot is a finer scan intended to narrow
in on qopt. The dashed blue curve is the scan done with two
pulses, ten turns apart with quantum excitation and damping
effects considered. For both plots, the solid blue curve is the
same pattern but does not consider such effects; the red curve
is the q scan over only a single quadrupole kick. We observe
from the right plot that the optimum quadrupole strength qopt

shifts from 0.047 for the two pulse scheme to 0.049 for the sin-
gle pulse scheme. A delay time of τ = 400 turns, dipole kick
of 22σ, and tune split νy − νx = 0.003 were constant. Note
the broken axis on the plot on the right, adjusting the scales
for each curve appropriately.

Section III for the motivation for the precise choice of q).
Additionally, the parameters νy − νx = 0.003, and dipole
kick of 22σ are constant.

From Fig. 6 we find that the maximum echo (which
is this time presented in terms of the subtracted back-
ground signal) from the ten sequence yields the largest
amplitude echo. This echo has a relative maximum
amplitude of 0.059, which is a 26% improvement from
the relative maximum amplitude of the single kick echo.
However, there is some variability in terms of which se-
quence performs the best for a given delay time. Nev-
ertheless, we find that a delay time of 450 turns per-
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forms the best overall, using two pulses separated by ten
turns. We also plotted the same sequence of two pulses,
separated by ten turns with quantum excitation and syn-
chrotron damping (Q&D) effects considered (dashed blue
line), to verify our initial simulations omitting such ef-
fects (solid blue line). We see that these lines are almost
identical, assuring us that Q&D effects are less relevant
in our current setup.

Unfortunately, however, even our best echo in this
analysis is orders of magnitude off from the much larger
echoes in Section III B. Though it is possible we observe
larger echoes at longer delay times (as Gabriel showed),8
we have kept our scan of delay times within a fairly
limited range of relatively short τ to avoid experiencing
damping effects, as discussed in Section IID. (In IOTA,
the damping time is10 0.65 s or 4.9× 106 turns, so oper-
ating at 300 ≤ τ ≤ 600 turns is well under that time.)
The agreement between the Q&D and non-Q&D plots in
Fig. 6 further verifies that we have selected a delay time
τ sufficiently smaller than the radiation damping time.

FIG. 6. Plot showing simulated delay time scan from 300 to
600 turns in 50 turn intervals. The solid blue line indicates
two pulses, separated by ten turns, without the considera-
tion of quantum excitation and synchrotron damping (Q&D)
effects; the dashed blue line is the same sequence that does
consider Q&D effects; the red line is only a single pulse, with-
out consideration of Q&D effects. The y-axis is the echo signal
(in µm) above the background signal. We find a maximum
echo at 450 turns. The simulation was ran with a tune split
of νy − νx = 0.003 and q = 0.0014.

Note that we have also chosen to plot the echo signals
in Fig. 6 as the centroid distance above the background
signal, which otherwise overwhelms the echo signal ren-
dering it largely unnoticeable. Fig. 7 shows the same
echo, one without any background noise subtractions and
one with background subtractions (“background” noise
was generated by setting q = 0 and running the simula-
tion). It is obvious from the plots in Fig. 7 that back-
ground noise can significantly drown out the detection
of the echo, as well as disguise the echo’s “true” loca-
tion. In the case of the left-hand plot, the echo’s peak is

measured at 963 turns, but on the right-hand plot it is
centered precisely where expected at t = 905 turns (the
offset of 5 turns results from the dipole kick at t = 5
turns).

FIG. 7. Top: Simulation of echo with q = 0.0014, τ = 450
turns, νy − νx = 0.003, and a dipole kick of 22σ. Bot-
tom: Same echo with background noise subtracted (including
dipole kick signal) and scaled to the frame size. This shows vi-
sually the effects of the background signal for small amplitude
beam echoes. We also see from the right hand plot that the
echo signal is centered precisely at the expected time t = 905
turns, as expected (the dipole kick is initiated at t = 5 turns).

D. Transverse coupling

The effects due to transverse coupling were considered
by scanning over the tune split. Transverse coupling im-
plies that beam dynamics in one plane will have effects
on the other plane—coupling is greatest when νy = νx.
Hence, coupling can have implications for the production
of echoes and will affect the amplitude. In our scan we
used the same parameters as in Section III C, with the
obvious change that the tune split is varied and here we
hold the delay time constant at 400 turns.
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The scan in Fig. 8 compares the echo amplitude above
the background signal from a two pulse setup (10 turn
pulse delay) and from a single pulse. Again, we have
somewhat mixed results, comparable to the analysis in
Section III C. What we find is that the largest amplitude
echo with a relative maximum of 0.11 is produced from
the two pulse scheme with a tune split of νy − νx =
0.018. This is an improvement of 27% over the single
kick. However, the two pulse sequence does not always
outperform the single kick scheme, and we find that at
particular tune splits the single kick yields a better echo
than two kicks.

FIG. 8. Plot showing simulated tune split scan. The blue line
indicates two pulses, separated by ten turns; the red line is
only a single pulse. The y-axis is the echo signal (in µm) above
the background signal. We find a maximum echo amplitude
at a tune split of 0.018. The simulation was run with delay
time τ = 400 turns and q = 0.0014.

IV. DISCUSSION AND CONCLUSION

The purpose of this paper is to analyze the possibility
of using multiple successive quadrupole kicks in the IOTA
to generate a larger echo signal than that generated by
only a single quadrupole kick. We first showed this to be
theoretically true in the linear limit, identifying Nq = 1
to be the optimal number of kicks for generating a large
echo, offering a 57% improvement over the single kick
amplitude. This, however, was only for consecutive turn
kicks.

In simulation we then considered many different num-
bers and patterns of quadrupole kicks, informed by the
fractional tune of IOTA. Three viable candidates were
selected and tested in simulation. What we found is
that the application of 2 kicks separated by ten turns
generated the largest echo. In the scan over quadrupole
strength, we observe an echo amplitude dependence that
grows with quadrupole strength to a value qopt but then
begins to decay. This shape is similar to what is expected

from nonlinear theory of both dipole and quadrupole
strength.6 We also see only a 4% difference between the
qopt values for the one and two pulse schemes. This is
unfortunate from an experimental standpoint, since our
maximum quadrupole kicker strength is much smaller
than this (around q = 0.0014, at best). Further, at
q < qopt the benefit of two pulses compared to one be-
comes marginal, with all other parameters constant (see
Fig. 5).

For scans in the small quadrupole kick regime (we used
q = 0.0014 corresponding to an experimental quadrupole
voltage supply of 280 V) echo amplitude showed variable
dependence upon both delay time and tune split. Never-
theless, according to the scope of the scans we performed
we find a maximum echo with a delay τ = 400 turns and
tune split νy − νx = 0.018, which generated an improve-
ment of 27% when compared to the maximum relative
echo amplitude generated by only a single quadrupole
kick. Compare the maximum amplitude echo generated
by only a single pulse to that of the maximum amplitude
echo generated by two pulses, ten turns apart (Fig. 9).

The same scans were also done considering the effects
of synchrotron radiation damping and quantum excita-
tion, but showed negligible difference when compared to
scans that did not consider such effects. This indicates
that these effects are not relevant at the small delay times
we have selected. Comparisons with nonlinear echo the-
ory were made, but few insights were offered due to the
fact that the nonlinear theory used assumed small dipole
kicks—we were unable to meet these assumptions in our
simulations. This can be corrected by comparing the
simulations with the more complete nonlinear dipole and
quadrupole theory presented in Sen and Li.6

It is important to note that this project is still ongo-
ing, with more simulations being run (and repeated) as
we gain information about experimental hardware limi-
tations (such as quadrupole kicker strength) and as we
optimize other parameters within the IOTA lattice (such
as nonlinear elements). As we look towards experiment,
we will likely have to find a means of improving the
quadrupole kicker strength. The resolution of the beam
position monitor (BPM) will also have to be improved if
kicker strength limitations still remain, down to the order
of a few microns.
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