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Final Cooling with Thick Wedges for a Muon Collider

Introduction

A muon collider Is a particle accelerator that collides muons
rather than protons or electrons. The muons for such an
accelerator would be generated by the decay of pions produced
In the collision of a proton beam with a target. These muons are
produced with high transverse and longitudinal emittance, which
must be reduced before they enter the accelerator. The final step
of this process is 4D cooling, reducing the transverse emittance
of the beam while allowing the longitudinal emittance to grow. We
modeled one such method of achieving 4D cooling, consisting of
two thick wedges separated by a drift channel and RF cavity for
phase rotation. A B AL S A s s
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Above: Diagram of 4D cooling pathway. Diamond was used as the wedge material for this study.

Methods

We used G4Beamline to model the two wedges and RF cavity.
We used Python to generate particle distributions with specified
beam parameters and to compute these parameters from
G4Beamline output. Designing the dispersion correction system,
drift channel, and focusing lattice was beyond the scope of this
project, so idealized versions of these components were modeled
using mathematical manipulations. We used the Nelder—Mead
method to optimize the length and half-angle of the wedges for
minimum transverse emittance, and the gradient, phase, and
length of the RF cavity for minimum momentum spread.

Results

Wedge performance Is primarily limited by the transverse
emittance and momentum standard deviation (sigma-p) of the
Input beam. We produced two optimized cooling channels, one
starting from 145 ym transverse emittance and 1.0 MeV/c sigma-
p and one starting from 110 ym and 0.8 MeV/c. These starting
points correspond to two possible endpoints of a previous cooling
stage. We studied the system’s performance for different input
beam parameters, momentum spreads, and wedge geomeitries.
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Above: Evolution of phase-space distributions as a beam passes through the optimal cooling channel for
the 110 ym, 0.8 MeV/c start point

Below: Beam properties at various stages of the optimal cooling channel for both start points considered

145 pm initial emittance case

x emit yemit z-emit sigma-p  slgma-t

Stage (pm)  (pm) (mm) (MeV/c) (ns) Beam remaining
Initial distribution 145.3  144.7  1.256 1.001 0.745 100.0%
After first wedge 44.4  150.5  6.409 7.247 0.745 100.0%
After RF cavity + 15% cut 38.9 143.2  4.436 1.293 4.404 84.0%
After second wedge + 40 cut 40.6 43.7 27.170 6.693 4.401 83.8%
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design of a final cooling scheme
for a muon collider and achieved
emittances that are below
existing published designs.
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110 pm initial emittance case

x emlt vy emit z-emit sigma-p slgma-t

Wedge half-angle (deg) Wedge half-angle (deg) Wedge half-angle (deg)

Stage (pm) (pm)  (mm) (MeV/c) (ns) Beam remaining
Initial distribution 110.0  109.8  1.385 0.798 0.933 100.0%
After first wedge 33.4 1149  7.357 6.510 0.933 100.0%
After RF cavity + 15% cut 28.9  113.7  5.039 1.395 4.475 84.0%
After second wedge + 40 cut 32.2 38.7 28.754 7.120 4.472 83.8%
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