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Neutrino-induced coherent pion production is an interaction between a neutrino and a target
nucleus under conditions of low momentum transfer that leaves the nucleus in the ground state.
This interaction is easily reconstructed, so it is a promising candidate to constrain neutrino flux in
the Deep Underground Neutrino Experiment (DUNE). However, its cross section is poorly defined
due to uncertainties on the nucleon axial form factor. In this work, we have compared three form
factor descriptions: a dipole approximation based on axial mass, MA, a z power series expansion
based on deuterium bubble chamber data, and z expansions for two Lattice QCD calculations.
Over relevant variable ranges, the curves for the form factors as a function of momentum transfer
were compared along with reweighted event data for kinematic variables in events simulated using
GENIE. The relative differences between various form factors and the dipole approximation with
MA = 1.00 GeV were under 11%. The relative differences for the momentum transferred from the
neutrino, momentum transferred to the nucleus only, and energy of the neutrino were under 13%.
With this in mind, neutrino-induced coherent pion production can be used to constrain neutrino
flux in DUNE within these uncertainties.

I. INTRODUCTION

There are yet a great many questions about the funda-
mental properties of neutrinos. Questions regarding the
ordering of the mass states of the various flavors, mix-
ing angles between the mass and flavor eigenstates, and
the charge-parity violating phase abound and motivate
modern neutrino experiments to search for methods by
which to constrain these values. Since the number of
interactions at various energies is the method by which
these values intrinsic to neutrinos can be determined, it is
imperative that oscillation experiments such as the Deep
Underground Neutrino Experiment (DUNE) have knowl-
edge of the energy and number distribution of neutrinos
that pass through their detectors.

This energy-number distribution is known as the neu-
trino flux, and it is predictably difficult to get an accu-
rate count of how many neutrinos are passing through a
detector. Even if one had an estimate of how many neu-
trinos would be produced at the proton target upstream
of the detector, due to neutrino oscillations and the wide
angle of the beam, it is often difficult to determine the en-
ergy or number of neutrinos at the detector to precision
levels necessary for experiments solely using beam data.
Instead, neutrino flux is more effectively determined at
the detector. This is done by starting with an interac-
tion that has a well defined cross section and is “clean”
enough for the detector to easily reconstruct the incident
neutrino energy. If one knows the chance of an inter-
action occurring, the number of those interactions that
occur within the detector, and the reconstructed energies
of the incident neutrinos that caused these interactions,
then one is able to deduce the flux at the detector.
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Neutrino-electron scattering has been proposed as one
of these such interactions for DUNE [1], and, while being
being very well understood, this interaction suffers from
a low cross section. Since high statistics are vital to neu-
trino experiments, it is therefore logical to consider an
interaction with a greater cross section.

Neutrino-induced coherent pion production is pre-
sented as a strong candidate for this greater-cross sec-
tion interaction. Although more theoretically complex
than neutrino-electron scattering, it is believed that the
recent advancements in theory surrounding the interac-
tion [2–10] will allow for a neutrino flux constraint to
be extracted using this process. This interaction has
great potential to be used as a flux constraint since it
quantifies what few approximations it utilizes, it is ap-
plicable at both low and high energies with the correct
kinematic cuts employed, the effects of final state interac-
tions are negligible [9], and the incident neutrino energy
can be reconstructed to high confidence. At the same
time, understanding this interaction is crucial as it is a
potentially problematic background in νe oscillation ex-
periments [9, 11].

The main setback with neutrino-induced coherent pion
production is the uncertainty in cross section due to lack
of precise knowledge of the axial form factor [2, 4, 7,
10, 12–18]. This problem has been taken on by many
groups [14–17, 19–23] seeking to constrain this form fac-
tor through various methods. Since few of the results
of these experiments are in total agreement with one an-
other, it is useful to compare their respective form factors
and quantify the effects of their differences on measured
quantities of neutrino interactions.

In this paper, these various form factor descriptions
will be laid out and explained before being directly com-
pared with one another over the relevant momentum
transfer ranges. Next, these form factors will be used
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to reweight events simulated using the GENIE neutrino
event generator to ascertain the physical manifestations
predicted by the descriptions, finally an analysis and con-
clusion will be given on the results of the comparison.

The paper is structured in the following manner. Sec.
II begins by providing background information founda-
tional to the process of neutrino-induced coherent pion
production. Next, Sec. III provides a light summary
of each of the descriptions presented to determine the
nucleon axial form factor. This is followed by Sec. IV
where the shape of the form factor curve for each of the
descriptions is explicitly laid out and directly compared
to the others. Continuing to the events themselves, Sec.
V uses these form factor curves to reweight GENIE data
for neutrino events to determine the shape of predictions
for kinematic variables under each theory. Sec. VI then
points out notable trends and results from these compar-
isons. Finally, Sec. VII gives a summary of the work.

II. NEUTRINO-INDUCED COHERENT PION
PRODUCTION

Neutrino-induced coherent pion production is an inter-
action between a neutrino of arbitrary flavor, νl, and a
nucleus, N , where the products are the same nucleus, an
appropriate lepton, l, and an appropriate pion, π. This
interaction has both a charged-current (CC) channel,

νl +N → l + π± +N,

and a neutral-current (NC) channel,

νl +N → νl + π0 +N.

A Feynman diagram for the CC interaction is shown in
Fig. 1, and a Feynman diagram for the NC channel is
shown in Fig. 2. In the NC case, the π0 further de-
cays into two photons that are potentially mistaken for
an e−, which is particularly relevant to νe oscillation ex-
periments as a background.

N
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l∓

W±

N

π±

FIG. 1: Charged-Current Coherent Pion Production.

The core tenet of this interaction is the demand that
the nucleus must maintain the same state before and af-
ter the interaction takes place; i.e., the quantum numbers
describing the nucleus must remain unvaried throughout

N
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FIG. 2: Neutral-Current Coherent Pion Production.

the interaction with the neutrino. This is what terms
the interaction “coherent.” Due to this constraint, coher-
ent pion production only occurs at low four-momentum
transfers between the neutrino-lepton system and the nu-
cleus system, denoted as q. In order to analyze this vari-
able as an invariant, q2 is considered instead, and, since
q2 is often less than zero, Q2 = −q2 is more commonly
utilized in calculations and analyses. This relationship is
explicitly laid out as

Q2 ≡ −q2 = −(pν − pl)
2, (1)

where pν is the four-momentum of the neutrino, and pl
is the four-momentum of the outgoing lepton. Only in-
teractions under a certain Q2 threshold are relevant for
consideration for coherent pion production, which is the
main kinematic cut that must be made when considering
the interaction. However, while Q2 is a useful kinematic
variable for most cuts and important in determining how
the neutrino will “see” the target nucleus, there is also
some momentum transfer to the pion, and Q2 fails to
differentiate momentum transfer to the pion from trans-
fer to the nucleus itself. The variable t is introduced to
remedy this. It is properly the squared four-momentum
transfer from the neutrino-lepton-pion system to the nu-
cleus, which is laid out as

t = (pν − pl − pπ)
2, (2)

where pπ is the four-momentum of the outgoing pion.
This variable is the best measure of coherence, and it is
useful in tandem with Q2 for analyzing the kinematics of
interactions.
The cross section for neutrino-induced coherent pion

production [11, 18, 24] is given as

dσ

dxdyd|t|
=

G2
FmN f2

πEν(1− y)

2π2gA

×FA(Q
2)
dσ(π0 +N → π0 +N)

d|t|
, (3)

where GF is the Fermi coupling constant, mN is the nu-
cleon mass, fπ is the pion decay constant, Eν is the en-
ergy of the incoming neutrino, y = Eν−El

Eν
with El as the

energy of the outgoing lepton, gA is the axial coupling
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constant 1, dσ(π0+N→π0+N)
d|t| is the pion-nucleus cross sec-

tion, and FA(Q
2) is the nucleon axial form factor, which

is known to be a function of Q2.
All variables other than the pion-nucleus cross section

and FA(Q
2) are known to high confidence. Accordingly,

these two variables must be constrained to calculate the
coherent pion production cross section. The pion-nucleus
cross section can be directly measured by DUNE, so it is
expected that this value will come into focus through ex-
periments in the coming years. Conversely, FA(Q

2) can
only be directly measured through measurements on free
nucleons, which cannot be done within DUNE. Due to
the difficulty of conducting such an experiment, FA(Q

2)
must instead be determined by using data from other ex-
periments and through theory, and these proposed values
must be rigorously cross examined to determine the most
accurate description for FA(Q

2). Descriptions offering
answers to the question of the shape of FA(Q

2) will now
be laid out in the following section.

III. DISCUSSION OF FORM FACTOR
DESCRIPTIONS

Descriptions for FA(Q
2) range from rough approxima-

tions to complex parameterizations. No matter the idea,
all descriptions must, in some way, consider the data from
the bubble chamber experiments from Argonne National
Laboratory (ANL), [20–22], Brookhaven National Labo-
ratory (BNL) [19], and Fermi National Accelerator Lab-
oratory (FNAL) [23] that provide experimental data to
constrain the form of FA(Q

2).

A. Axial Dipole Approximation

The simplest of the models for FA(Q
2) is the dipole

approximation. This model is rigorously defined in Refs.
[4–7, 15], and is treated as an assumption that, while
known to be imperfect, is a reasonable fit at lowQ2 where
FA(Q

2) is relevant to coherent pion production. The
equation for the dipole approximation is given as

FDip
A (Q2) =

gA

(1 + Q2

M2
A
)2

(4)

where gA is the axial coupling constant, and MA is the
axial mass.

While FDip
A (Q2) is only dependent on a single unknown

quantity, the value of MA is poorly constrained by exper-

iments, which raises reasonable doubts that FDip
A (Q2) is

an oversimplified model and should not be used as the de-
scription for FA(Q

2). MA has been measured [19–23] for

1 In the dipole approximation, gA = 1.2723 as defined in Ref.[25].
However, the other descriptions may use slightly different values
for gA.

decades now, but there still exist severe tensions between
various experiments, with the only strong consensus be-
ing that 1.00 GeV ≤ MA ≤ 1.40 GeV. Even over this
seemingly small range, these different values for MA gen-

erate quite different curves for FDip
A (Q2) as will be shown

in Sec. IVA. Nevertheless, the relatively simple expres-

sion for FDip
A (Q2) combined with the research done in the

past [19–23, 26] make the dipole approximation a good
baseline for FA(Q

2) in flux constraint considerations.

B. z Expansion

In response to the simple, but poorly constrained,
dipole approximation model description, the z expan-
sion presents a method of defining FA(Q

2) independently
of any model. Instead of considering the physical dis-
tribution of FA(Q

2), the z expansion employs a power
series expansion to fit the shape of FA(Q

2). A proper
mathematical treatment of this theory is given in Refs.
[2, 3, 14], but a brief description similar to that in Ref.[12]
will also be given here.

In Quantum Chromodynamics (QCD), the function
FA(Q

2) is analytic for Q2 = −t > −tcut where tcut de-
notes the location of a t-channel cut. Therefore, a new
analytic function z(Q2) can be defined:

z(Q2) =

√
tcut +Q2 −

√
tcut − t0√

tcut +Q2 +
√
tcut − t0

(5)

with t0 as a somewhat arbitrary parameter that collab-
orations utilizing descriptions based on the z expansion
formalism will define differently. In all examinations, tcut
is chosen to be tcut ≡ (3mπ)

2, which is the three-pion
kinematic threshold [16]. FA(Q

2) can now be expanded
as a power series in z(Q2) since |z| < 1:

F z
A(Q

2) =

∞∑
k=0

akz(Q
2)k ≈

kmax∑
k=0

akz(Q
2)k, (6)

which can in turn be truncated to an approximation by
only running the summation over a finite number of co-
efficients as shown in Eq. 6.

There have been two families of endeavors to determine
the values of ak: experimentally, by using deuterium
data, and theoretically, by using Lattice Quantum Chro-
modynamics calculations. Both of these methods will be
addressed in the following two subsections.

1. Deuterium Data

Using a fit to the bubble chamber experiments’ data
[19–23], Ref. [14] constrains ak as shown in Table I.
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a0 a1 a2 a3 a4

0.759 -2.30 0.6 3.8 -2.3

a5 a6 a7 a8

-2.16 0.896 1.58 -0.823

TABLE I: Coefficients for the deuterium data z expan-
sion fit to the combined datasets from all bubble chamber
experiments [19–23].

It is important to note that Ref. [14] defines all coeffi-
cients based on FA(q

2), so the coefficients given in that
work have had their signs switched to be compatible with
FA(Q

2).
For this implementation of the z expansion descrip-

tion, t0 was chosen in order to minimize |z| over the
range 0.00 GeV2 ≤ Q2 ≤ 1.00 GeV2. This value was
determined explicitly as

t0 ≡ tcut(1−
√
1 + (Q2

max/tcut) ≈ −0.28GeV2. (7)

Fits were performed to each set of data independently,
but the coefficients given in Table I are for a simultaneous
fit to the combined data set from all bubble chamber
experiments.

2. Lattice QCD

As Lattice QCD (LQCD) has seen improvements over
the past decade, there has been intense interest in con-
straining FA(Q

2) through theoretical calculations em-
ploying the z expansion description. In this work, Lat-
tice QCD calculations from two groups were analyzed,
one from Bali et al. [15] and one from Djukanovic et al.
[16].

For the calculations done by Bali et al., the coefficients
specifically for their !z4+3 calculation were utilized as
they remark that this calculation gave the best descrip-
tion of their data. These coefficients are given in Table
II.

a0 a1 a2 a3 a4 a5 a6

1.013 -1.713 -0.591 -0.771 7.790 -8.418 2.689

TABLE II: Coefficients from LQCD calculations done
by Bali et al. [15].

For t0, they define

t0 = −tcut = −9m2
π, (8)

which was chosen such that the function was well-
behaved at tcut = t0.
The coefficients for Djukanovic et al. are given in Table

III.

a0 a1 a2

1.225 -1.274 -0.379

TABLE III: Coefficients from LQCD calculations done
by Djukanovic et al. [16].

They never explicitly define t0, instead defining z as

z(Q2) =

√
tcut +Q2 −

√
tcut√

tcut +Q2 +
√
tcut

. (9)

However, it can be noted that this is the same as the z
definition from the other works with t0 = 0.
Now that all of the parameters regarding the various

descriptions of FA(Q
2) have been defined, direct com-

parisons and visualizations of the behavior of FA(Q
2) for

these descriptions will be presented in the following sec-
tion.

IV. AXIAL FORM FACTOR COMPARISON

We made a direct comparison of the shapes of the
FA(Q

2) curves for each description in order to assess the
magnitude of variation between them. These descrip-
tions were first analyzed within their own families and
later compared comprehensively against all other descrip-
tions. Two ranges of Q2 were used for these analyses,
both starting at Q2

min = 0.00 GeV2 but with Q2
max = 1.00

GeV2 for a greater picture of how the descriptions differ
at larger values of Q2 and Q2

max = 0.20 GeV2 for a tighter
comparison over the values of Q2 that are more relevant
to coherent pion production.

A. Dipole Approximation

To analyze the dipole approximation description, var-
ious values of MA were used to generate the FA(Q

2)
curves. These values were selected to range from 1.00
GeV2 to 1.25 GeV2 in increments of 0.05 GeV2. The
plots to the different maximum values of Q2 are given in
Fig. 3.
To better quantify the differences over both ranges of

Q2, a plot of the the dipole approximation with different
values for MA were compared against the dipole approx-
imation with MA = 1.00 GeV according to

|∆F i
A(Q

2)| =
|F i

A(Q
2)− FDip., MA=1.00

A (Q2)|
|FDip., MA=1.00

A (Q2)|
, (10)

where ∆F i
A(Q

2) is the relative difference for a given from

factor description, F i
A(Q

2), and FDip., MA=1.00
A (Q2) is the

FA(Q
2) for the dipole approximation with MA = 1.00

GeV, which was chosen arbitrarily. The results are shown
in Fig. 4.
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FIG. 3: Comparisons of FA(Q
2) for the dipole

approximation descriptions with varying values of MA.
Q2

max = 1.00 GeV2 for the top figure and Q2
max = 0.20

GeV2 for the bottom figure.

FIG. 4: Relative difference plot for varying values of MA

for the dipole approximation description. MA = 1.00
GeV is the baseline. Q2

max = 0.20 GeV2 since the trends
continue linearly past the relevant range.

B. z Expansion

Beginning the comparisons of the z expansion descrip-
tions with the deuterium data study, the shape of the

axial form factor, F z,D
A (Q2), curves for varying values of

kmax were examined. This analysis is shown in Fig. 5.

FIG. 5: Comparisons of FA(Q
2) for the deuterium data

z expansion description with varying values of kmax.
These curves are plotted to Q2

max = 1.00 GeV2 in order
to better show the subtle differences as kmax increases.

Similarly to as is done in Ref. [14], it was noted that

the F z, D
A (Q2) curve for kmax=4 is essentially the same

as for greater values of kmax. This was proven through
a relative difference plot generated using an expression
similar to Eq. 10:

|∆F i
A(Q

2)| =
|F i

A(Q
2)− F z, D, kmax=4

A (Q2)|
|F z, D, kmax=4

A (Q2)|
, (11)

where F i
A(Q

2) is now one of the F z, D
A (Q2) curves for the

deuterium data z expansion except for kmax = 0 due to
it being an unhelpful description and kmax = 4 because

F z, D, kmax=4
A (Q2) is the FA(Q

2) curve for the deuterium
data z expansion with kmax=4, which is used as the base-
line for the relative difference analysis.
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FIG. 6: Relative difference plot for varying values of
kmax for the deuterium data z expansion. kmax = 4 is

the baseline. The curve for kmax = 0 has been purposely
omitted.

FIG. 7: Comparisons of FA(Q
2) for both LQCD z expan-

sion descriptions. Q2
max = 1.00 GeV2 for the top figure

and Q2
max = 0.20 GeV2 for the bottom figure.

As can be seen from Fig. 6, F z, D
A (Q2) for kmax = 4

is an accurate description of the results of the bubble

chamber study. Therefore, F z, D
A (Q2) was used exclu-

sively with kmax = 4 throughout the rest of this exami-

nation for the sake of simplicity.
Moving to the LQCD calculations carried out by Bali

et al. [15] and Djukanovic et al. [16], the coefficients are
calculated such that it would be improper not to use the
entire list calculated by each collaboration, so there is no
need to independently determine what kmax should be for
these descriptions. Figure 7 shows FA(Q

2) for these two
descriptions. One can see that these descriptions do not
converge to gA at FA(Q

2 = 0) as is expected and shown in
the other descriptions. This is due to the uncertainties
intrinsic to the calculations, and the difference in the
spectra is likely not a real effect.

C. Direct Comparison

Finally for FA(Q
2), selected descriptions from all fam-

ilies were compared at once. In order to get a range of
values for the dipole approximation without crowding the
plots, only dipole descriptions with MA = 1.00, 1.10, 1.20
GeV were plotted. Once again, these descriptions were
all compared over both Q2

max = 1.00 GeV2 and Q2
max =

0.20 GeV2. Figure 8 shows both of these comparisons.
In order to more precisely analyze the differences be-

tween the FA(Q
2) descriptions, a relative difference plot

was generated according to Eq. 10, where F i
A(Q

2) is any
selected form factor description, not simply any dipole
approximation description as in Sec. IVA. Figure 9
shows these relative differences only to Q2

max = 0.20
GeV2 as it is more easily seen that the descriptions differ
appreciably at greater values of Q2.

V. EVENT REWEIGHTING

In order to get an idea of how these changes in FA(Q
2)

would manifest within the detector, it was necessary to
compare event variables as recorded by the detector for
different descriptions. This was facilitated principally by
generating 1,000,000 events using the detector geome-
try of the DUNE Near Detector in GENIE with FA(Q

2)
given by the dipole approximation with MA = 1.00 GeV.
The events from this file were then reweighted accord-
ing to their Q2 value for the other FA(Q

2) descriptions
to compare the shapes of event distributions. Figure 10
gives three histograms of various reweighted event distri-
butions for event variables.
Furthermore, Fig. 11 shows the relative differences

between reweighted number of events in each bin for each
FA(Q

2) for each variable. The method for generating
these curves is given as

|∆N i
a(ζ,Q

2)| = |N i
a(ζ,Q

2)−NDip., MA=1.00
a (ζ,Q2)|

|NDip., MA=1.00
a (ζ,Q2)|

,

(12)
where ∆N i

a(ζ) is the relative difference in the reweighted
number, N , of events in a bin, a, for an arbitrary vari-
able, ζ, with an arbitrary form factor description that is
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FIG. 8: Comparisons of FA(Q
2) for the dipole

description with selected MA values and the z expansion
description for the deuterium data [14], LQCD

calculations by Bali et al. [15], and LQCD calculations
by Djukanovic et al. [16]. Q2

max = 1.00 GeV2 for the
top figure and Q2

max = 0.20 GeV2 for the bottom figure.

FIG. 9: Relative difference as given in Eq. 10 between
selected FA(Q

2) descriptions and the FA(Q
2) curve for

the arbitrarily chosen dipole approximation with
MA = 1.00 GeV.

still dependent on Q2, and NDip., MA=1.00
a (ζ,Q2) repre-

FIG. 10: Reweighted histograms for various event
variables.

sents the same information but specifically for the dipole
approximation description with MA = 1.00 GeV2.

VI. ANALYSIS

As seen from Fig. 9, the curves of FA(Q
2) vary only

up to about 11% from the dipole approximation with
MA = 1.00 GeV. These uncertainties are relatively small,
but the more telling indication of the sensitivity of the
coherent pion production cross section is the examina-
tion of the relative difference curves for the kinematic
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FIG. 11: Relative differences between the number of
reweighted events for various event variables.

variables as presented in Fig. 11. For all three of these
variables within their relevant ranges, the relative dif-
ferences stay under 13%. While the curves for t grow
and plateau around 0.02 GeV2 and the curves for Eν

remain essentially flat, the Q2 relative difference curves
show rapid growth at approximately 0.100 GeV2. Be-
neath that threshold for Q2, the relative differences are
even smaller, remaining under 8%. This provides evi-
dence that, at very low values of Q2, events exhibit only
minimal kinematic differences.

VII. SUMMARY

Neutrino-induced coherent pion production is a low-
momentum transfer candidate interaction to constrain
neutrino flux in the DUNE Near Detector. In order for
this interaction to be considered a viable candidate for
flux constraint, its uncertainties regarding its cross sec-
tion must be analyzed. The principle uncertainty to be
addressed prior to the start of data collection at DUNE is
that of the correct description of the nucleon axial form
factor as a function of momentum transfer from the neu-
trino, FA(Q

2) , over the low range of momentum transfer
from the neutrino, Q2, relevant to coherent pion produc-
tion.

In this Paper, we have addressed and compared two
general types of FA(Q

2) descriptions. Firstly, there is
the dipole approximation. Dependent only on the value
of the axial mass, MA, this approximation is the simplest
description of all that were analyzed, but it involves a
great deal of uncertainty due to this axial mass parameter
that experiments [19–23] offer differing values for. Sec-
ondly, there is the z expansion parameterization. This is
a model-independent description that uses coefficients in
a power series expansion to give the shape of the FA(Q

2)
curve. Two methods of determining these coefficients in
the z expansion have been analyzed here: experimentally
from bubble chamber data [14] and theoretically from
Lattice QCD calculations [15, 16].

All types of descriptions had their FA(Q
2) curves com-

pared within their families (Figs. 3, 4, 5, 6, and 7)
before being directly compared to one another (Figs.
8 and 9) through plotting the relative difference be-
tween various descriptions. Following this direct com-
parison, histograms for events generated using GENIE
with the DUNE Near Detector geometry for Q2, momen-
tum transfer to the nucleus, and neutrino energy were
reweighted according to the various form factors (Fig.
10) before the number of events in each bin also had
their relative differences compared (Fig. 11).

Within the relevant range of 0.00 GeV ≤ Q2 ≤
0.20 GeV2, the relative difference between all other form
factors and the dipole approximation with MA = 1.00
GeV was less than 11%. Within their respective relevant
ranges, the relative differences between the event vari-
ables was under 13%. Imposing a more restrictive cut,
the relative difference in events for Q2 can be reduced to
less than 8% for 0.00 GeV2 ≤ Q2 ≤ 0.10 GeV2. Using
this analysis, neutrino-induced coherent pion production
can be used to constrain neutrino flux in the DUNE Near
Detector within the uncertainties shown here. This work
would benefit from a further study quantifying these dif-
ferences through performing Monte Carlo template fits
for these FA(Q

2) descriptions.
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