
otsdaq: An Innovative Framework for Efficient Data Acquisition and Analysis

Brenda Najjuma
Wilbur Wright College - City Colleges of Chicago

(Dated: August 10, 2023)

ABSTRACT

otsdaq is an advanced data acquisition and analysis framework designed to optimize data processing
and streamline scientific research processes. This research paper provides a comprehensive overview
of the system’s architecture, features, and its applications in diverse fields. The otsdaq system
offers a scalable, high-throughput, and user-friendly platform for handling vast volumes of data and
extracting meaningful insights, thereby revolutionizing the way data is acquired and analyzed in
modern research.

INTRODUCTION

Otsdaq is significant in facilitating data-driven re-
search. It presents the motivation behind its develop-
ment, outlining the challenges faced by traditional data
acquisition methods and the need for a more efficient
and streamlined approach. Otsdaq is significant in facil-
itating data-driven research. It presents the motivation
behind its development, outlining the challenges faced
by traditional data acquisition methods and the need
for a more efficient and streamlined approach. Otsdaq
is an acronym for “off-the-shelf data acquisition”. It is
a data-acquisition (DAQ) solution that is ready to use
and designed for the test beam, detector development,
and other rapid deployment settings. The Mu2e experi-
ment makes use of this online DAQ software framework.
Otsdaq comes as a web page, offering a web interface
for configuring, controlling, and monitoring online DAQ
software entities. Over time, upgrades, bug fixes, and
the development of new features are necessary to enhance
the design and functionality of certain aspects of otsdaq’s
graphical user interface.

ONLINE DAQ SOFTWARE DEVELOPMENT

C++ is used on the server side. Through plugins
(C++ classes deriving from the relevant class), devel-
oper code is added. Here is the user online DAQ software
plugin categories: Front-end interfaces are the programs
used to interact with external devices, such as the plugins
that are typically available for each type of FPGA read-
out card. Trigger modules, online monitor modules, and
artdaq fragment generators are examples of art modules
that use code to decode data and transfer it to artdaq
event builders. Code for custom data handling in data
processors, such as data stream-to-ROOT for Visualizer
Configuration table handlers are programs that handle
configuration data in a certain way, for as by outputting
FHiCL or by offering auxiliary functions like getVolume()
for objects whose sizes are determined by configuration
parameters. HTML and JavaScript are used on the web
side of the system. Web apps are created by adding devel-
oper code through .html files (together with the necessary

.js and .css files). If you wanted to overlay the calorimeter
FPGA temperature color-coded on a 3-D model of the de-
tector with slider controls to define thresholds, this would
be a customized user web application. There are exam-
ples and ots JavaScript libraries that control function-
ality, like altering the configuration, reading from slow
controls, or running a series of front-end reads and writes.

ARCHITECTURE AND COMPONENTS

For its implementation, otsdaq employs the artdaq
DAQ framework, which provides flexibility and scalabil-
ity to address increasing DAQ needs. For the experi-
ment, otsdaq incorporates technologies from the artdaq
toolkit and serves as the bond that allows for a consistent
experience for all users. The Fermilab Scientific Com-
puting Division developed otsdaq and artdaq, and devel-
opments are divided into two sections: the server side
and the web side. otsdaq offers a library of front-end
boards and firmware modules that implement a custom
UDP protocol. In addition, an integrated Run Control
graphical user interface (GUI), and readout software that
is preconfigured to communicate with otsdaq firmware
are included. Front-end interfaces - code that communi-
cates with an external device, such as the Data Transfer
Controller (DTC) and each type of Readout Controllers
(ROC). Front-end interfaces are plugins that define how
to connect to a device that is not connected to otsdaq.
The executables that start when otsdaq is launched are
those that are enabled in the configuration tree for that
node. The executables’ children are then instantiated
depending on the specifications specified by the selected
configuration alias when the state machine later moves
to the Configured state. A configuration tree that fully
defines the online DAQ configuration is represented by a
configuration alias

WEB DESKTOP

The ots web desktop environment serves as your entry
point to all of otsdaq’s potential. Here are the desktop
features in brief:



Najjuma

FIG. 1. Homepage of the Graphical User Interface (GUI) of
otsdaq with all the available icons.

• Same user across different monitors, computers,
and browser tabs.

• Access permissions-enabled configurable desktop
window icons and folders.

• Window manipulation including tiling, resizing,
moving, minimizing, maximizing, refreshing, and
closing are available.

• Global and individual user presets for window lay-
out.

STATE MACHINE

Each of the entities that follow the state machine has
a defined behavior according to the states and transi-
tions. Otsdaq supports several state machines, each of
which has a set of configuration aliases and user access
authorization settings. At any given time, only one state
machine can be in the configured state. It is possible
to operate separate otsdaq instances of partitioned state
machines in parallel (could be shared read-only configu-
ration).

FIG. 2. Image of the State machine after being configured.

What transpires during system transitions?

1. Starting up. This creates executable applications.

2. Initializing. This resets application properties.

3. Configuring. After loading the configuration tree
based on the configuration alias parameter, all
plugins are instantiated and the configuration se-
quence for each entity in the system is run accord-
ing to priority. Slow controls are then activated
(polling threads are started).

4. Starting. Write startup registers, front ends go
live in priority order as data processing begins
(files/sockets are opened, buffers are instantiated).

5. Pausing. Front ends become inactive, and data
processing pauses (threads may become idle,
files/sockets may not be closed).

6. Resuming. Data processing resumes, and front
ends become active.

7. Stopping. Front ends become inactive, and data
processing stops (threads are killed, files are
closed).

8. Halting. Deallocating plugins.

9. Shutting down. Exit executable applications.

10. Soft erroring. When a plugin throws a soft-error
exception, for example, all entities pause until the
exception is resolved, at which point experts might
try to recover and resume the run.

11. Erroring. Asynchronous error conditions cause all
entities to reach a failed state (for example, a plugin
throwing an exception due to an error).

What occurs systemically when in each state?

1. Initial: This one is in idle mode and can interact
with other users, monitor EPICS, change configu-
ration settings, and more.

2. Halted: Some application properties have been set
up.

3. Configured: This is the same as the initial state,
but now additionally polling/reading slow controls
data and publishing to EPICS.

4. Running: Data processing is active (files/sockets
are in use, buffers are filling and emptying), and
front ends are running.

5. Paused: Front ends are inactive, and data process-
ing is suspended (idle files/sockets, threads sleep).

6. Shutdown: Idle except for the Gateway application,
for example, cannot monitor EPICS.

7. Failed: This one is the same as Halted.

2



Najjuma

DATA PROCESSING

The online DAQ’s main function is data processing.
Event data can be processed using artdaq modules or
data processor plugins. Plugins for data processors can
extend the capability of generic data handlers by adding
their own specialized handling. One feature of the ots
visualization tools, for instance, uses specialized data
processor plugins to produce ROOT objects that can
be viewed on the web desktop. Users are free to cre-
ate ots data processor plugins for whatever idea they
have. Users have access to artdaq’s versatility and scala-
bility when they utilize the Artdaq data processor plugin
in otsdaq. An artdaq Board Reader with a Fragment
Generator plugin is created by the artdaq data proces-
sor plugin. Additionally, the user can instantiate artdaq
Event Builders, Dispatchers, and Data Loggers depend-
ing on how the online DAQ system is configured. As
an illustration, Mu2e will have a Board Reader for each
DTC, one Tracker/Calorimeter Event Builder per server
(each running the trigger algorithm with as many art an-
alyzer processes as fit on the server, approximately 20),
a second-level Event Builder which will integrate CRV
data, several Data Loggers on dedicated nodes for writ-
ing data to online storage, and several Dispatchers to
provide real-time data quality monitoring. A Data Pro-
cessor Producer/Consumer creates ROOT objects that
are displayed in a Visualizer after being forwarded by
Monitors that subscribe to a Dispatcher. The user can
simultaneously send a subset of metrics to EPICS, all of
them to Ganglia, and only the most crucial ones to a file.
Artdaq tracks a vast number of metrics that essentially
cover everything regarding event rate and data flow.

DATA STORAGE AND MANAGEMENT

FRONT-END INTERFACES

Front-end interfaces are thought to be the specifics for
how to interface to a device not part of otsdaq (i.e., C++
to write and read). For instance, during development, a
detector readout software emulator or a front-end inter-
face plugin may connect to an FPGA card for detector
readout. Here are a few examples of front-end interface
plugins.

MACRO MAKER

A tool called Macro Maker enables users to create
macros by executing front-end interface writes and reads
and building sequences of the writes and reads. Users
can save macros individually or make them accessible to
all users. Early development and low-level front-end in-
terface debugging can both benefit from the use of macro
maker. A target plugin or C++ can be used to export

macros directly as FE Macros.

FIG. 3. Image of the Macro Maker

FE MACROS

A front-end interface plugin class’s C++ member func-
tions are known as FE Macros. The main benefit is that
FE Macros are easily accessible through the web inter-
face using either the FE Macro Test web app or custom
user web apps. In the FE Macro Test web app, the in-
put and output arguments (strings or numbers) for FE
Macros are displayed on the right. Generic private and
public macros from Macro Maker are also supported by
the FE Macro Test online application.

FIG. 4. The FE Macro Test layout with the output and his-
tory sections.

MACRO MAKER MODE

The idea behind Macro Maker mode is that any-
one (such as a firmware developer) can utilize this
streamlined mode without keeping track of configuration
changes or using the state machine if they only wish to
use front-end interface plugins with FE Macros or generic
macros. The configuration is imported through the usage
of an FHiCL parameter file. The state machine immedi-
ately moves to the Configured state when Macro Maker
mode is activated.

DATA ANALYSIS AND VISUALIZATION

Visualizer: The visualizer web application allows users
to navigate both live and stored ROOT objects. With

3



Najjuma

refresh rate as an option, the web application can display
several ROOT objects in various desktop windows. It is
possible to store and load pre-made views. Additionally,
the visualizer web app has a 2-D and 3-D mode that
communicates with the visualizer server-side app using a
unique ots protocol (although suffers from some bit rot).
Users of the 3-D display in their browser can rotate and
fly through it.

FIG. 5. The web application displaying several ROOT ob-
jects.

SCALABILITY AND PERFORMANCE

Console: Another ots utility that eliminates the need
to enter the Linux terminal is the console web app, which
enables users to exist remotely. The foundational fea-
tures of the console are based on the Artdaq message
facility. Messages can be filtered, and user preferences
are maintained per user. They also contain labels, line
numbers, and severity. The ots output macros can be
used to generate printouts from any user plugin code to
the terminal, log files, or web console.

FIG. 6. The console web app.

CONCLUSIONS

oIn conclusion, otsdaq represents a cutting-edge frame-
work revolutionizing data acquisition and analysis in re-
search. Its adaptable architecture, encompassing C++
and web-based components, enables seamless integration
and customization. With versatile plugins, otsdaq em-
powers researchers to optimize data handling and visu-

alization. This innovation propels scientific exploration
towards efficient, impactful insights in a rapidly evolving
landscape.

By addressing the limitations of traditional data ac-
quisition methods, otsdaq underscores its significance as
a catalyst for data-driven research. Its ability to seam-
lessly integrate with various scientific applications, such
as the Mu2e experiment, demonstrates its versatility and
adaptability in diverse settings.

The utilization of plugins, employing C++ classes de-
rived from base categories, facilitates dynamic code inte-
gration, ensuring flexibility and extensibility for develop-
ers.

The internship aimed to comprehend the system, grasp
HTML, and enhance the GUI, contributing to otsdaq’s
continuous evolution.

With dedicated emphasis, a notable portion of the in-
ternship time was directed toward the ambitious objec-
tive of creating an all-encompassing history within the
FE macro test plugin. Despite encountering challenges
that resulted in a partial outcome, this experience yielded
valuable insights into the intricacies of otsdaq’s graphical
user interface.

ACKNOWLEDGEMENTS

1. Fermi Research Alliance, LLC under Contract No.
DE-AC02-07CH11359 with the U.S. Department of
Energy, Office of Science, Office of High Energy
Physics.

2. This work was supported in part by the U.S. De-
partment of Energy, Office of Science, Office of
Workforce Development for Teachers, and Scien-
tists (WDTS) under the Community College In-
ternships Program (CCI).

3. I would like to express my gratitude to my supervi-
sor, Micol Rigatti, for teaching me such exceptional
problem-solving techniques. Furthermore, she al-
ways asks us to come along with her so we may
view the projects she is working on and pick up
new skills.

REFERENCES

1. Rigatti, M.,2020, Analysis, design, and test of an
HW/SW electronic system for data acquisition and
control of the Mu2e Fermilab Experiment, Univer-
sity of Pisa, p. 46-113.

2. Rivera, R.A., Flumerfelt, E., 2023, otsdaq Software
Features for Mu2e, Workshop; Fermi National Ac-
celerator Laboratory, p.1-62.

4


