
Contribution to the L-CAPE project

Jasmine Tang

Advisor: Jason St. John

Acccelerator Directorate

August 2023

Abstract

The L-CAPE project utilizes asynchronous data from thousands of Linear Ac-
celerator devices and applies data science techniques to detect anomaly of ac-
celerator failure before the incident, as well as automatic labels of accelerator
outages. The author describes her contribution progress for the L-CAPE project
this summer, as well as suggestions for future interns working on the project.

1

Contents

1 Introduction 4

2 Tools 4

3 Data, Libraries and Workflow 4
3.1 DataGuide.csv . 4

3.1.1 Devices mismatch . 5
3.2 Workflow . 5
3.3 Workflow suggestions . 6

3.3.1 Environments variables 6
3.3.2 Deppendencies and requirements.txt 6

4 The data analyzer script 6

5 The Concave/Convex hull classification 7
5.1 plot hull via axes . 7
5.2 intersection heat map . 8
5.3 get list containing point . 9

6 Metrics of evaluation 9
6.1 Labeled metrics . 10

6.1.1 Homogeneity, Completeness and V-measure Score 10
6.1.2 Minimum count threshold 10

6.2 Unlabeled metrics . 10
6.2.1 Silhouette Score . 10
6.2.2 S Dbw . 10

6.3 Weighted Average . 11

7 Clustering: DBSCAN 11

8 Conclusions and future work 11

9 Miscellaneous 11
9.1 G4blplot . 11
9.2 Languages . 12

2

Acknowledgements

I would like to express my most sincere gratitude to Jason St. John for accepting
me into the CCI program this summer and for his continued support throughout
the process. His expertise and insightful advice have played a crucial role in
shaping the outcome of this report, and I am truly grateful for his assistance.

I would also like to extend my thanks to Jason St. John, Carol Johnstone,
Jan Strube, and Milan Jain for their invaluable guidance and mentorship, which
helped me navigate the challenges of this project.

Multiple software packages/libraries contributed significantly to the project,
and thus, also deserve acknowledgment:

• [VD09]-Python Programming Language and its libraries.

• [Matplotlib]-Matplotlib.

• [Har+20]-NumPy.

• [tea20]-Pandas.

• [Jai+22]- The L-CAPE project at Fermilab.

3

1 Introduction

The Linac provides the initial acceleration for the hadron beams used by the
entire Fermilab accelerator complex. Despite the best efforts of Linac experts
and accelerator operators over decades of refined and improved operation, an
appreciable fraction of the intended operation remains unavailable due to un-
planned downtimes. The L-CAPE project sets out to automatically label the
causes of unplanned Linac outages, to allow for expert analysis and remediation.
The project’s further goal is to automatically forecast impending outages, us-
ing precursor signals (if any), which may enable automatic mitigation and even
prevent certain outages. Finally, in cases where downtime cannot be avoided,
the project will attempt to forecast downtime duration, enabling downstream
power-saving measures such as RF amplitude reduction or power reduction for
hundred of electromagnets and their cooling systems.

The intern, in this project report, describes her contribution progress for
the L-CAPE project this summer that reflects the goal of the project, as well
as suggestions for future interns working on the project.

Due to the rapid nature of the repository where the code is hosted, readers
are encouraged to

2 Tools

The section talks about a variety of toolings. we used pandas with Matplotlib
with Jupyter Notebook for data processing and analysis. To save data and re-
sults, we again used Jupyter Notebook with pandas and CSV files. The parquet-
snappy file format is also being used for recordings of data from devices. This
is first obtained from a raw HDF5 file format.

For non-numerical data (the convex/concave library) which is still columnar
(for example, shapely polygon), we switched to Pickles and subsequently to
sqlite3 with the Well-Known-Text format.

3 Data, Libraries and Workflow

This section details the data being used to produce this project report, as well
as the workflow of the intern.

The data is stored on gmpsai2@fnal.gov, a shared workspace that team
members can access via SSH by obtaining Kerberos tickets. Each user has their
own dedicated folder where they can develop their own code.

3.1 DataGuide.csv

The DataGuide file is a csv file that encapsulates the following information.

• smooshname: The simplified name of the device, this helps generalize a
device name, getting rid of their purpose and specific tag.

4

• Reading Device: The name of the reading device.

• Setting Device: The name of the setting device.

• RFStation: The RFStation that the device is at.

• SwitchDevice: The name of the switch device.

• Description: The metadata of the device.

The purpose of the DataGuide is that it is composed of expert matter, only
containing related devices for the L-CAPE project. This helps with querying
new data for training, allowing to reduce stress and noise on our model.

The csv file also comes with its own defined delimiter and extra settings via
pd.read csv(). In fact, often times there might not be a convention to be had
about opening and saving the DataGuide.csv file that is going to be used for a
PandaFrame.

This might lead to programmers and scientists using different configurations,
artificially creating more friction in getting and importing data.

It is also the case that there often is a need for common queries of the data
that we feel should be included in the library. For example, in Section 3.1, a
programmer is concerned with the difference of the two device type. Without
too much looking into the architecture of the project, the hope is that they can
simply just query the difference.

Realizing the current pain point of working with the DataGuide.csv, we pro-
grammed dataguidance.py so that users can instantiate a class of DataGuide
by giving the path to a dataguide.csv

3.1.1 Devices mismatch

One of the problems that occurs is that there is usually a mismatch between
the reading devices and the setting devices, meaning the reading that a device
produces and the reading that the operator set for that device.

In a normal condition, the difference between values of the reading device
and setting device should be minimal, or near zero.

A common occurrence is sometimes when an operator set a value for a device,
the model is unable to detect that the operator set that device, instead, all it
sees is that there are changes in the readings of devices. Thus, it falsely reports
the event as an anomaly.

We would want to extract the difference between the reading device and the
setting device into data so that we can better inform the model. Thus, the need
for Section 3

3.2 Workflow

I recommend setting up Remote Development with VSCode so that users can
shift from developing in the terminal to developing on an IDE.

New interns when being added to the private L-CAPE repository should
clone the repository to their own folder.

5

3.3 Workflow suggestions

The section prescribed the things I have not done but nonetheless strongly
recommend new interns follow the current practices described in this subsection.

3.3.1 Environments variables

A reason to integrate environment variables is that they are modular and easy
to work with. A user can rerun the same script on their machine without
concerning with changing the path to a file in the Python script but can just
set the environment variable to be of their needs.

This simplifies the process and ensures consistency when using scripts across
different environments and users.

I recommend dotenv and os.environ for managing environments variables.

3.3.2 Deppendencies and requirements.txt

It is hard to think about dependencies regarding a large project. The team keeps
a requirements.txt that handles dependencies for developers on the team.

For example, the Concave/Convex hull (CCCV) algorithm requires a pre-
vious version of Shapely that requires rolling back NumPy to the previous
version. The intern should communicate to the team about rolling back impor-
tant and needed libraries.

This stems from the fact that Python cannot handle importing the same
package of different versions. A compromise is to have by asking the following
questions:

• Is the library that requires rolling back previous version of dependencies
important?

• How can we handle dependency version conflict? (One way is to specify a
range of acceptable versions)

4 The data analyzer script

We want to figure out in a raw .hdf5 file, which devices satisfy a set of conditions
and repeat this operation for thousands of devices.

With Python, this requires the utilization of the machine’s cores, more specif-
ically, with x amount of cores on the machine, each core repeats this same step
for thousands of files:

dg ← the DataGuide.csv
colt← collection
file glob← all data file ending in .h5
device lst← the list of all setting devices in dg whose device has the reading
devices
for each data file in file glob do

keys← name of control system device from data file

6

for each key in keys do
if key is in from device lst then

colt[key].add(data file)
end if

end for
end for
dct← Combination of all results of each collection into a single collection.

The output is a collection represented as a dictionary, whose key A is the
string representing the setting devices’ name, and the value of that key is a set
B of strings C. (So each value C in the set B signifies that key A was found in
the file name of string C.)

After we run the script that performs the pseudo-code, the results were not
very promising

Out of 654 setting devices present the DataGuide.csv of 2770 devices, 344
of those are also present

5 The Concave/Convex hull classification

The Concave/Convex hull (CCCV) classification library is developed with the
idea of classifying a new 2D data point based on the hull of all the 2D data
points of the same class.

The goal is to end aid operators in helping them make a decision in identi-
fying a fault type.

The library depends on the shapely library in Python. It uses sqlite3 instead
of Pickle to manage the polygon that shapes the hull, storing it in a .db file.
This allows easy expansion to other languages without depending on Python-
specific libraries such as Pickle.

To help realize this goal, the library supports the following function, divided
by sections.

5.1 plot hull via axes

Plot all the hulls based on the classes’ list.

7

Figure 1: Demo plot showing how hulls are plotted against data points in CCCV

5.2 intersection heat map

Create an axes (object from matplotlib) that contains the percentage of inter-
section area.

For row and column:

• grid[row][column] represents the percetange of intersection area compared
to row.

• grid[column][row] represents the percetange of intersection area compared
to column

8

Figure 2: Demo plot showing how intersection heat map works

For example, when reading the grid, if at the row position “Ross”, the col-
umn position “Priscilla” is 38%, it means that the intersection of ”Ross” and
“Priscilla” takes up 38% of the area of “Ross”

Users can opt to turn on interpretation = True in the function call for
automatic guidance.

5.3 get list containing point

get list containing point gets a list of all the polygon’s classes for which the
point(x,y) is contained in it.

For example, if a point (4.0, 4.0) is only in 1 class’s polygon named ‘NICK’,
the list being returned will be a list [‘Nick’]

6 Metrics of evaluation

It is important in picking the right clustering model that we explore and de-
fine some metrics. Metrics is a tool for other developers and even the Python
program to understand which models perform best.

The section discusses both labeled metrics and unlabeled metrics, as the
current situation is both the shortage of labeled data as well as the absence of
generating unlabeled data.

9

6.1 Labeled metrics

6.1.1 Homogeneity, Completeness and V-measure Score

The homogeneity score of a cluster measures the similarity between data points
in each cluster. It has a range from 0 to 1, with 1 representing perfect satisfaction
of homogeneity.

The completeness score of a cluster: measures if all data points of the same
class are in the same cluster. [0, 1]

It is often hard to evaluate the two things at the same time, so V-measure
is introduced as the harmonic mean of the two metrics.

From sklearn:

1 v = (1 + beta) * homogeneity * completeness

2 / (beta * homogeneity + completeness)

6.1.2 Minimum count threshold

Current labeled data only has 273 data points with 93 classes. In addition, half
of the classes only have 1 label for the class; this means that sometimes, these
classes are often classified as noise.

We introduced the minimum count threshold not as a metric but to help
with interpretability and noise.

6.2 Unlabeled metrics

Since the majority of data (in the future) will be unlabeled due to the lower
priority of labeling data, we want a way to determine if a clustering model is
good enough.

6.2.1 Silhouette Score

A measure of how similar an object is to its own cluster (cohesion) compared
to other clusters (separation). This score is bounded between -1 for incorrect
clustering and +1 for highly dense clustering. Scores around zero indicate over-
lapping clusters.

To make the score compatible with other scores that have the range from
0 to 1, we try to map the distribution range of the Silhouette Score from [-1
to 1] by shifting up 1 and dividing by 2. This will help with integrating into a
uniformly weighted metric.

6.2.2 S Dbw

All the clustering metrics described have been from Scikit-learn, with little
mentioning of how effective they are at measuring. In our case of massive
unlabeled data, it should be said that we need even better validation of our
clustering method.

10

A paper in 2010 validates these unlabeled (internal) metrics, including Sil-
houette score, Davies-Bouldin index, and S Dbw. In regards to five different
aspects of the incoming data, they note that S Dbw performs well in all five
aspects.

Unfortunately, the algorithm has not been implemented in Scikit-learn and
we have not found any library that implemented the algorithm. Due to time
constraint, we are unable to provide a concrete implementation of the algorithms
and thus, are falling back onto the Silhouette Score.

6.3 Weighted Average

Since we have conformed all metrics into the 0 to 1 range, we can introduce
a new metric that is the weighted sum of all the metrics to be included. This
helps us not to be cumbersome with too many metrics.

7 Clustering: DBSCAN

We decided to try DBSCAN due to poor performance for k means clustering,
decision trees and other traditional methods.

Currently, there has not been enough unlabeled data to run through DB-
SCAN.

8 Conclusions and future work

There is still significant work to be performed. This section presents some ideas
for future work as well as the direction of the project.

A pain point of the project currently is that the model is not having the
expected performance, i.e. it is still struggling with accuracy.

The L-CAPE project is going through a meeting to acquire more funding.
The project will need to get more capital resources to extend past this year.

9 Miscellaneous

9.1 G4blplot

In addition to the aforementioned work, I also support other interns in their
endeavors.

More specifically, I helped them get up to speed with G4Beamline, a physics
simulation software, and my code base earlier in spring.

I also helped them walk through my report paper, as well as continued
support for my codebase [jja], fixing any bugs and adding new features as they
requested.

11

I also am automating documentation as well as automated tests for the
project, so that my successors can keep working on this, with an infrastructure
already in place for them.

9.2 Languages

I am also interested in languages and compilers. I would want to build a new
G4beamline scripting language for particle physics and hope that the next sum-
mer, I would get a chance to work on some projects of similar uses.

References

[Matplotlib] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Com-
puting in Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.
1109/MCSE.2007.55.

[VD09] Guido Van Rossum and Fred L. Drake. Python 3 Reference Man-
ual. Scotts Valley, CA: CreateSpace, 2009. isbn: 1441412697.

[Har+20] Charles R. Harris et al. “Array programming with NumPy”. In:
Nature 585.7825 (Sept. 2020), pp. 357–362. doi: 10.1038/s41586-
020-2649-2. url: https://doi.org/10.1038/s41586-020-
2649-2.

[tea20] The pandas development team. pandas-dev/pandas: Pandas. Ver-
sion latest. Feb. 2020. doi: 10 . 5281 / zenodo . 3509134. url:
https://doi.org/10.5281/zenodo.3509134.

[Jai+22] Milan Jain et al. “The L-CAPE Project at FNAL”. en. In: Pro-
ceedings of the 5th North American Particle Accelerator Confer-
ence NAPAC2022 (2022), USA. doi: 10.18429/JACOW-NAPAC2022-
WEPA40. url: https://jacow.org/napac2022/doi/JACoW-
NAPAC2022-WEPA40.html.

[jja] jjasmine. fermi-proj: A scripting library for g4beamline plotting/-
data processing/automation. url: https://github.com/badumbatish/
fermi_proj.

12

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.18429/JACOW-NAPAC2022-WEPA40
https://doi.org/10.18429/JACOW-NAPAC2022-WEPA40
https://jacow.org/napac2022/doi/JACoW-NAPAC2022-WEPA40.html
https://jacow.org/napac2022/doi/JACoW-NAPAC2022-WEPA40.html
https://github.com/badumbatish/fermi_proj
https://github.com/badumbatish/fermi_proj

	Introduction
	Tools
	Data, Libraries and Workflow
	DataGuide.csv
	Devices mismatch

	Workflow
	Workflow suggestions
	Environments variables
	Deppendencies and requirements.txt

	The data analyzer script
	The Concave/Convex hull classification
	plot_hull_via_axes
	intersection_heat_map
	get_list_containing_point

	Metrics of evaluation
	Labeled metrics
	Homogeneity, Completeness and V-measure Score
	Minimum count threshold

	Unlabeled metrics
	Silhouette Score
	S_Dbw

	Weighted Average

	Clustering: DBSCAN
	Conclusions and future work
	Miscellaneous
	G4blplot
	Languages

