
MN-DUNE

Python Database Upload Tool
Version 1.0

Marvin Marshak
Hajime Muramatsu

Alex Wagner
Urbas Ekka

Page 1 of

Table of Contents

Table of Contents
Table of Contents..2
Introduction..3
Setup...4

Prerequisites...4
Installation...4
User Configuration..5

Obtaining a PKCS12 Certificate...5
Configuring Access to the HWDB..6

Viewing the configuration..6
Setting a PKCS12 certificate..6
Setting the HWDB server...7

Tutorial...8
Example 1 (Simple)...8

Preparing Component Types For Uploading..8
Configuring the Datasheet..9
Organizing HW Item Data in Spreadsheets..11
Defining Encoders..12
Defining a Docket...15
Uploading a HW Item...16

Example 2 (Adding a Test)..19
Uploading an HW Item with Tests..21

Example 3 (Complex Case)...22
HW Item Datasheet...22
HW Item Data...23
HW Item Encoder...24
Test Datasheet...25
Test Data Spreadsheets...27
Test Encoders..29
Docket...31
Uploading the Docket...32

Page 2 of

Introduction
The DUNE HWDB is set up to provide a repository for diverse hardware
components and their associated tests, where the data requirements may be
drastically different from one component type to the next.

To accommodate this, the database provides free-form JSON/YAML
“Specifications” and “Datasheet” fields, where each group can define their own
structures. It is therefore helpful for us to provide tools for the various consortia to
manage this complexity.

The Python Database Upload Tool is a utility to help with this complexity. It allows
consortia to define those structures, map them to tabular data contained in CSV or
Excel files, and upload that data into the HWDB.

Page 3 of

Setup

Prerequisites
 Linux/MacOS system with Anaconda installed. This tool has not been tested

in a pure Windows environment, but it works fine with Windows using
WSL/Ubuntu. Anaconda may be downloaded at
https://www.anaconda.com/download.

 A Fermilab Services account

 A PKCS12 certificate for the Fermilab account. Visit https://cilogon.org to
obtain this certificate.

 The user must have access to the HWDB database. (This may take 24 hours
after your Services account is activated.)

 The tool is used in conjunction with the HWDB Web UI. Familiarity with the
Web interface is required for setting up hardware items and tests to receive
uploaded data. Once these have been set up, subsequent users will not
necessarily need to know how to use the Web interface.

The Web UI can be found at the following URLs:

Development https://dbweb9.fnal.gov:8443/cdbdev/index

Production https://dbweb9.fnal.gov:8443/cdb/index

Installation
Currently, the installation package will be supplied as a ZIP file
(“Sisyphus-20230615.zip”)

Choose an appropriate directory to extract the contents of the ZIP file. For example:
“$HOME/Projects”, thereby creating a directory “$HOME/Projects/Sisyphus-
20230615”

If your default shell is BASH, add the following to the end of your
“.bashrc” file (or other shell startup script), using, of course, the
actual name of the directory of the extracted contents:

export PATH=~/Projects/Sisyphus-20230615:$PATH

Page 4 of

https://dbweb9.fnal.gov:8443/cdb/index
https://dbwebapi2.fnal.gov:8443/cdbdev/index
https://cilogon.org/
https://www.anaconda.com/download

export PYTHONPATH=~/Projects/Sisyphus-20230615/lib:$PYTHONPATH

Modify these instructions as necessary if you are using a different shell.

These paths are not required to run the main scripts in the upload tool, but they do
allow those scripts to be invoked without specifying the entire path to those scripts.
The remainder of this document will assume that these paths have been added.

User Configuration

Obtaining a PKCS12 Certificate

Before the upload tool can be used, users need to download a PKCS12 certificate for
their fermilab account.

1. In your browser, go to https://cilogon.org

2. If you have never visited CILogon before, it may ask you to select an identity
provider. Choose “Fermi National Accelerator Laboratory” and click
“Logon”

3. The browser will redirect to the Fermilab authentication page. Authenticate
using one of the methods offered.

4. The browser will now return to the CILogon page. Choose “Create
Password-Protected Certificate”

5. Choose a password to be associated with your PKCS12 certificate. Note that
this does not have to match the password for your Fermilab Services account.

6. Click “Get New Certificate.” A new certificate will be generated for you to
download.

7. Click “Download Certificate.” The new certificate will be downloaded to the
directory your browser is currently set for downloading files. (On Windows,
this will typically be your “Downloads” folder.) The file will be named
“usercred.p12” if this is the first certificate you’ve downloaded, or “usercred
(<number>).p12” if you have downloaded previous certificates.

8. Make a note of the location of the PKCS12 certificate. If you will be using
the Upload Tool on a Linux system, you may need to move the file to an
accessible location. You may rename this file to avoid ambiguity if you will
have multiple users on your system, e.g., to “<your username>.p12”.

Page 5 of

https://cilogon.org/

Configuring Access to the HWDB

Use the “hwdb-configure” command to configure access to the HWDB.

Viewing the configuration

To view the current configuration, enter “hwdb-configure” with no parameters. If the
configuration utility has never been called before, the tool will automatically create a
directory “$HOME/.sisyphus” containing a default configuration using the
DEVELOPMENT version of the HWDB.

Figure 1: Using hwdb-configure to display the current configuration

Setting a PKCS12 certificate

To use the PKCS12 certificate downloaded from CILogon, supply the location of
downloaded certificate and the password you created using “--cert” and “--
password” parameters.

Figure 2: Using hwdb-configure to add a user's certificate

The configuration utility will automatically extract a PEM certificate from the P12
file using the password provided (or raise an error if the password is incorrect) and
store it in the “$HOME/.sisyphpus” directory. The password used is not retained by
the system after configuration!

WARNING: Please note that the PEM certificate is unencrypted and not password
protected, and it can now be used to access the HWDB without a password! The
configuration utility does attempt to set the “$HOME/.sisyphus” directory to only be
readable by the owner, but it may be worthwhile to check the permissions to see that
they were set correctly. In general, use good security practices in handling the PEM
file!

Page 6 of

Setting the HWDB server

To set the utility to point to a different HWDB server (e.g., production), use the “--
rest-api” parameter.

Figure 3: Using hwdb-configure to change the REST API server location

The addresses for the two currently-available servers are as follows:

Development dbwebapi2.fnal.gov:8443

Production dbweb9.fnal.gov:8443

The examples provided in this document are only currently available on the
Development server. It is highly recommended that new Component Types are tested
on the Development server before being deployed to Production.

Page 7 of

Tutorial
The following examples demonstrate the general usage of the Upload Tool. After
installing the application, these examples can be found under
${INSTALL_DIR}/Examples/upload-docket/Tutorial.

For these examples, the HW Item and Test datasheets already exist in the
development database. For your own items and tests, you will need to edit these
yourself. Please refrain from changing the HW Item and Test Definition datasheets
in the Web UI for the Component Types used in these examples!

Note that you will need to change the serial numbers in the spreadsheets between
tests!

Example 1 (Simple)
For this example, we will upload a HW Item to the database, with no test data. The
HW Item will have a simple datasheet, consisting only of (field, value) pairs.

Preparing Component Types For Uploading

Uploading HW Item data to the database requires four things:

 The Datasheet of the Component Type must be configured in the Web
Interface to contain the structure of the data you wish to upload.

 The data to be uploaded must be contained in spreadsheets (CSV or Excel
files)

 An encoder must be created in JSON format describing how spreadsheet data
is translated into the Datasheet for the item. (If the structure is simple, the
encoder is very straightforward.)

 A docket file must be created in JSON format listing the spreadsheets
containing data and the encoder(s) to use

Page 8 of

Configuring the Datasheet

For this example, the Datasheet has already been configured. The Datasheet has
three fields: “Color”, “Comment”, and “Widget ID”.

Note that the intent here was to suppose that the HW Item’s serial number is
internally known as “Widget ID”, so it has been added to the Datasheet to reflect
that. Note that this is merely an aesthetic choice, and it is not necessary if you are
sufficiently happy with it only being known as “Serial Number.”

Note the following about datasheets:

 The Datasheet is in YAML format. The same content may be formatted in
multiple ways in YAML. Don’t be alarmed if, after saving the Specification,
the Datasheet is formatted differently than it was inputted.

Page 9 of

Figure 4: Example 1 HW Item Datasheet

 Dictionary-type data is by definition unordered, so the list of fields given will
likely not appear in the same order after it is saved.

 Field names are case-sensitive.

 If a field is listed in the Datasheet, it is required to be in the data to be
uploaded. (It is acceptable for it to be blank or null in the spreadsheet, but it
must be accounted for.)

 The database will accept fields that are not listed. This leaves the possibility
of putting leaving the Datasheet empty and still uploading data into it
anyway. It is not recommended to do this, as the functionality is subject to
change.

 If a field is defined as a list, the database will expect that the uploaded data
for that field will be one of the items in that list. E.g., if the field is defined as
“Color: [red, green, blue]”, then the submitted data must be one of the three
values.

 If a field is expected to contain complex data such as a list or dictionary (or
even a nested hierarchical structure of lists and dictionaries, this structure
does not need to be defined here (for the reason above that it will be
interpreted as multiple-choice). Just use “field_name: null”.

Page 10 of

Organizing HW Item Data in Spreadsheets

HW Items to be uploaded must be organized in spreadsheets. These may be in CSV
or Excel format. If you use Excel format, the file may contain multiple sheets,
because when the docket file is created, it is possible to specify which worksheet in
the file to use.

The spreadsheet must contain the following column headers. Note that they are
case-sensitive and should not contain any extra spaces before or after the name. Item
data should be supplied in the second row and beyond.

 “External ID” – The database will assign the External ID when the item is
uploaded, so leave this blank. (Future: supplying an External ID will make
the tool attempt to edit an existing item instead of adding a new one.)

 “Country” – Every item needs to have a country of origin (along with an
institution ID) in order for the database to define the full Part ID, e.g.
“D00501342003-00002-US125”. The country may be supplied as any of the
following:

◦ The two-letter country code, e.g., “US”

◦ The full name of the country, e.g., “United States”

◦ The country code in parentheses, followed by the full name, e.g., “(US)
United States”

Please refer to EDMS ID 2505353 for a list of country codes.

 “Institution” – Similarly to Country, the Institution is required for the
database to define the full Part ID. The institution may be supplied in the
following ways:

◦ The numeric institution code, e.g., “186”

◦ The full name of the institution, e.g., “University of Minnesota Twin
Cities”

◦ The institution code in parentheses, followed by the full institution name,
e.g., “(186) University of Minnesota Twin Cities”

Please refer to EDMS ID 2505353 for a list of institution codes.

 “Manufacturer” – The manufacturer must be in the list of manufacturers
configured for the Component Type. Similar to Country and Institution, it
may be given as the manufacturer’s ID, the manufacturer name, or a
combination, e.g., “27”, “CERN”, or “(27) CERN”.

Page 11 of

 “Serial Number” – This should be some number that uniquely identifies the
HW Item (within the given Component Type) prior to it being assigned an
External ID. The HWDB itself will allow a serial number to be used multiple
times, but the Upload Tool will not. Be warned that editing a serial number
through the Web Interface, although allowed, may confuse the Upload Tool
when attempting to add secondary information to a HW Item, such as test
results.

 The remaining column headers should correspond with the fields listed in the
Datasheet. Note that the choice to put “Widget ID” in the Datasheet results in
the same serial number data under two differently-named columns.

 It is possible, if you wish, to define structured data for one or more of the
fields. In this case, the data can be added in separate sheets or as additional
columns in the main sheet. See instructions and examples later in this
document to see how to do this.

Here is the HW Item spreadsheet for this example:

Defining Encoders

An Encoder is a JSON document that maps a spreadsheet to a Datasheet in a HW
Item or a Test for a HW Item.

It is possible to define an Encoder inline in a Docket file, but since Encoders are
intended to be reused, this document will only cover the case where Encoders are
isolated into their own files.

Page 12 of

Figure 5: Example 1 HW Item Spreadsheet

Here is the encoder file “encoders.json” for this example:

Figure 6: Example 1 HW Item Encoder

The Encoder file is required to be formatted as follows:

 The top level must be a dictionary

 The top level dictionary must contain a “Type ID” field which specifies the
Type ID for the Component Type

 The top level dictionary must contain an “Encoders” field which contains a
list

 Each item in the list specifies a different Encoder. For simple cases, this may
be a single item.

 Each Encoder is a dictionary which contains the following entries:

◦ “Encoder Name” – this is how the Docket file will identify which
Encoder to use.

◦ “Item Identifier” – if the data in the Datasheet were thought of as an entry
in a table, the Item Identifier is the field that would be the key. It may
help to explain that this is somewhat of a throwback to before we felt
confident that the Serial Number didn’t have some predetermined use
outside of the end user’s control. In the future, we may make this field
optional and assume “Serial Number” as the default.

Page 13 of

◦ “Grouping” – this contains a list of “group” objects. All the user-defined
columns in the spreadsheet must belong to a group. The groups define the
hierarchy represented by the columns in the spreadsheet. For simple
cases, the data would most likely be “flat,” and would only require a
single group, but a more complicated item may contain fields that are
themselves lists of records with their own fields. This can be achieved by
using multiple groups. This will be illustrated later in this document.

 Each “group” must contain a “Members” field, which contains the user-
defined columns for the HW Item.

 A “group” is also allowed to define a “Name”, a “Key” containing one or
more of the members in that group, and a “Lock Keys” boolean value. These
are more useful for Test Encoders than for Item Encoders, and will be
explained there.

Page 14 of

Defining a Docket

A Docket is a JSON document that specifies which spreadsheets should be encoded
and uploaded to the HWDB.

Here is the docket file “docket.json” for this example:

Figure 7: Example 1 Docket File

The Docket file is required to be formatted as follows:

 The top level must be a dictionary

 The top level dictionary must contain a “Type ID” field which specifies the
Type ID for the Component Type

 The top level dictionary must contain a “Sources” field which contains a list.

 Each item in the list is a dictionary object that specifies a source

 Each source may contain the following fields:

◦ “File” – the absolute or relative location of a CSV or Excel spreadsheet.
If the location is relative, the tool will first check relative to the directory
containing the Docket file. If not found, it will then check relative to the
current working directory in the shell invoking the tool. File globbing is
allowed. If the pattern matches more than one file, the order in which the
files will be processed is not guaranteed.

◦ “Sheet” – if the file(s) are Excel, “Sheet” specifies which worksheet
name or number will be used. If no sheet is specified, only the first sheet
will be used. If the file is CSV, “Sheet” is ignored.

Page 15 of

◦ “Encoder Source” – the absolute or relative location of an Encoder file
containing the Encoder to be used. If the Encoder is specified later in the
Docket file, “Encoder Source” is not needed.

◦ “Encoder Name” – the name of the Encoder specified in either “Encoder
Source” or later in the Docket file

 The top level dictionary may also contain an “Encoders” field governed by
the same rules as the Encoder file.

Uploading a HW Item

Once you have created a Docket and Encoder, have defined the Datasheet in the
HWDB Web Interface, and have a spreadsheet containing HW Item information to
be uploaded, you are now ready to use the Upload Tool to upload your HW Items.

Invoke the Upload tool in your shell with “hwdb-upload-docket”. The Upload Tool
will scan the Docket for sources and process them using the specified Encoders. At
this point, it will NOT upload the results to the database. Instead, it will output its
results to “item-receipt.json” for you to review to make sure that the encoding
produced what you expected.

Figure 8: Using hwdb-upload-docket to preview upload

Here is the contents of the “item-receipt.json” file:

Page 16 of

Figure 9: item-receipt.json

If the contents of “item-receipt.json” looks correct, you may then invoke “hwdb-
upload-docket” again, this time adding the parameter “--submit”. The Upload Tool
will attempt to upload the items to the database and it will report whether the attempt
was successful. PLEASE NOTE that when using “--submit”, the tool processes the
docket from the beginning. It does not read or use what was previously written in
“item-receipt.json”.

Figure 10: Using hwdb-upload-docket to upload data

The tool will automatically check for existing serial numbers and will not attempt to
add them again if you invoke the tool a second time:

Page 17 of

Figure 11: Attempting to add HW Items a second time

Page 18 of

Example 2 (Adding a Test)
Let’s add a new Test Type for our Component Type.

We will create a test named “Bounce”, with the Datasheet as shown:

Figure 12: Example 2 HW Item Test Specification
.

The spreadsheet “Test_Bounce.xlsx” is as follows:

Figure 13: Example 2 Test Spreadsheet

We will add a second encoder to “encoders.json”:

Page 19 of

Figure 14: Example 2 Encoder File

Finally, we’ll add the test spreadsheet to “docket.json”:

Page 20 of

Figure 15: Example 2 Docket File

Uploading an HW Item with Tests

We may now upload this example:

Figure 16: Example 2 Uploading the Data

Page 21 of

Example 3 (Complex Case)
The Upload Tool is able to handle more complex situations than the ones previously
described.

Let’s consider the following example.

HW Item Datasheet

Suppose we have a component type representing a “widget,” and each widget
contains several “doodads.” One possibility, of course, is to make “doodad” a
completely different component type in the database, and then link them as
subcomponents, but let’s suppose that the doodads are intrinsic enough to the widget
that it doesn’t make sense to consider them as entirely separate entities, but
important enough to be represented individually in the widget specification.

The specification, therefore, might be best represented as a hierarchical structure
instead of a simple list of fields and values, e.g.,

Figure 17: Example 3 HW Item Structure

For this sort of hierarchical structure, only the top-level fields need to be represented
in the Datasheet for the HW Item:

Page 22 of

Figure 18: Example 3 HW Item Specifications

HW Item Data

The HW Item spreadsheet needs to reflect the hierarchical structure of the data. One
fairly intuitive way is to have the top-level and secondary-level fields as columns in
the same sheet, repeating the top-level values as needed to indicate that the
secondary-level values are subordinate to them:

Figure 19: Example 3 HW Item Data

Page 23 of

The utility does allow, however, for duplicate information for the top-level data to be
eliminated in subsequent rows:

Figure 20: Example 3 HW Item Data, "sparse" format

Either format may be used (with no changes to the encoder), but the code in the
Tutorials directory uses the second.

HW Item Encoder

It is possibly confusing that the field “Doodads” (plural) from the Datasheet does not
appear in our spreadsheet. “Doodads” here specifies a container or “Grouping” for
the secondary-level data.

Because of the two-level hierarchy, our HW Item encoder for this example must
contain two groups. The first group specifies which fields belong to the top-level
structure, and which of those fields is best suited to act as a “key” for those data. In
this case, “Color” and “Flavor” do not appreciably contribute to uniquely identifying
a set of data, so “Widget ID” is the only reasonable choice. We have given the first
group a name of “Specifications,” because that is where the data belongs in the HW
Item record in the HWDB, but it is completely optional to give the first group a
name, and giving it a different name will not affect the functionality of the upload
tool.

Because our Datasheet has the secondary-level data under “Doodads”, the second
group must be named that as well. Because this is the final grouping for this
example, it is not strictly necessary to identify a key, because there are no further
levels of data that need it to determine their place in the structure.

Page 24 of

Figure 21: Example 3 HW Item Encoder

Test Datasheet

For this example, let’s make the “Bounce” test more complex.

Let’s suppose that the widget is dropped at several different temperatures at a
number of different heights. At each temperature, we are summarizing the results of
the various heights into a single average value. We therefore have two different
sheets, one with the average value, and another containing the details that were
summarized. (We could still have done these as a single sheet, but we’ll do it as
separate sheets for the sake of an example.)

To further complicate matters, let’s suppose that our detail sheets contain only one
HW Item each, while our summary sheet contains multiple HW Items.

The desired resulting data structure may appear as follows:

Page 25 of

Figure 22: Example 3 Test Data Structure

In the Web UI, the Datasheet for this is very simple. We only need the top-level
fields; in this case, “Widget ID” and “Test Results”.

Figure 23: Example 3 Test Specification

Page 26 of

Test Data Spreadsheets

The test data for this example is contained in three spreadsheets. The format for the
two subtables is the same.

Note that since the subtable rows need to attach to the main table, enough of the
main table columns need to be duplicated in the subtable to indicate ownership.

Page 27 of

Figure 24: test-bounce.xlsx

Figure 25: test-bounce-subtable-1003.xlsx

Page 28 of

Figure 26: test-bounce-subtable-1004.xlsx

Test Encoders

We need two encoders for tests for this example.

The first encoder manages the main sheet.

Page 29 of

Figure 27: "test-bounce" encoder

The second encoder manages the detail. Note that the “grouping” of the main sheet
is duplicated, at least as far as the “key” fields go. This is necessary for the “detail”
contained in the rows to find the place in the structure hierarchy where it belongs.

Page 30 of

Figure 28: "test-bounce-detail" encoder

Docket

Note that since there is more than one detail sheet, and they are similarly-named,
we are able to use file globbing to include all files matching a pattern.

Page 31 of

Figure 29: docket.json

Uploading the Docket

We are now ready to upload the data to the database!

Figure 30: Example 3 Uploading Data

Page 32 of

	Table of Contents
	Introduction
	Setup
	Prerequisites
	Installation
	User Configuration
	Obtaining a PKCS12 Certificate
	Configuring Access to the HWDB
	Viewing the configuration
	Setting a PKCS12 certificate
	Setting the HWDB server

	Tutorial
	Example 1 (Simple)
	Preparing Component Types For Uploading
	Configuring the Datasheet
	Organizing HW Item Data in Spreadsheets
	Defining Encoders
	Defining a Docket
	Uploading a HW Item

	Example 2 (Adding a Test)
	Uploading an HW Item with Tests

	Example 3 (Complex Case)
	HW Item Datasheet
	HW Item Data
	HW Item Encoder
	Test Datasheet
	Test Data Spreadsheets
	Test Encoders
	Docket
	Uploading the Docket

