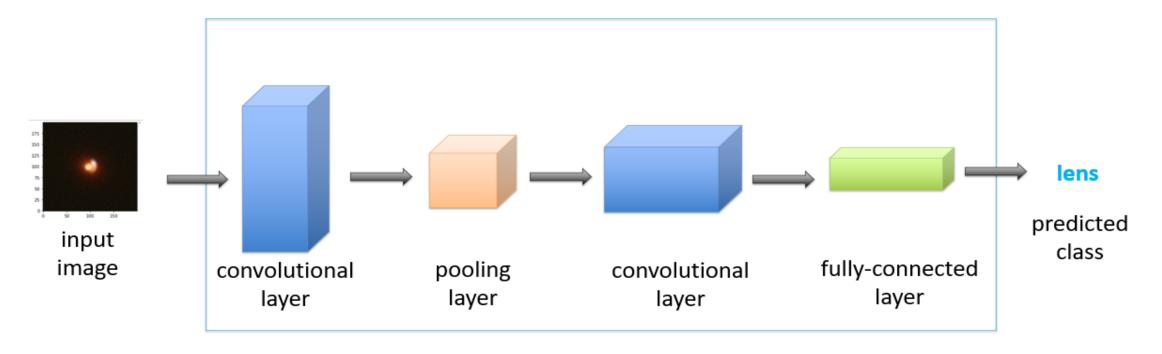
Benchmarking Neural Network Architectures for Strong Gravitational Lens Classification Eileen Nolan, George Mason University — SIST Intern | Brian Nord and Alex Drlica-Wagner

Background

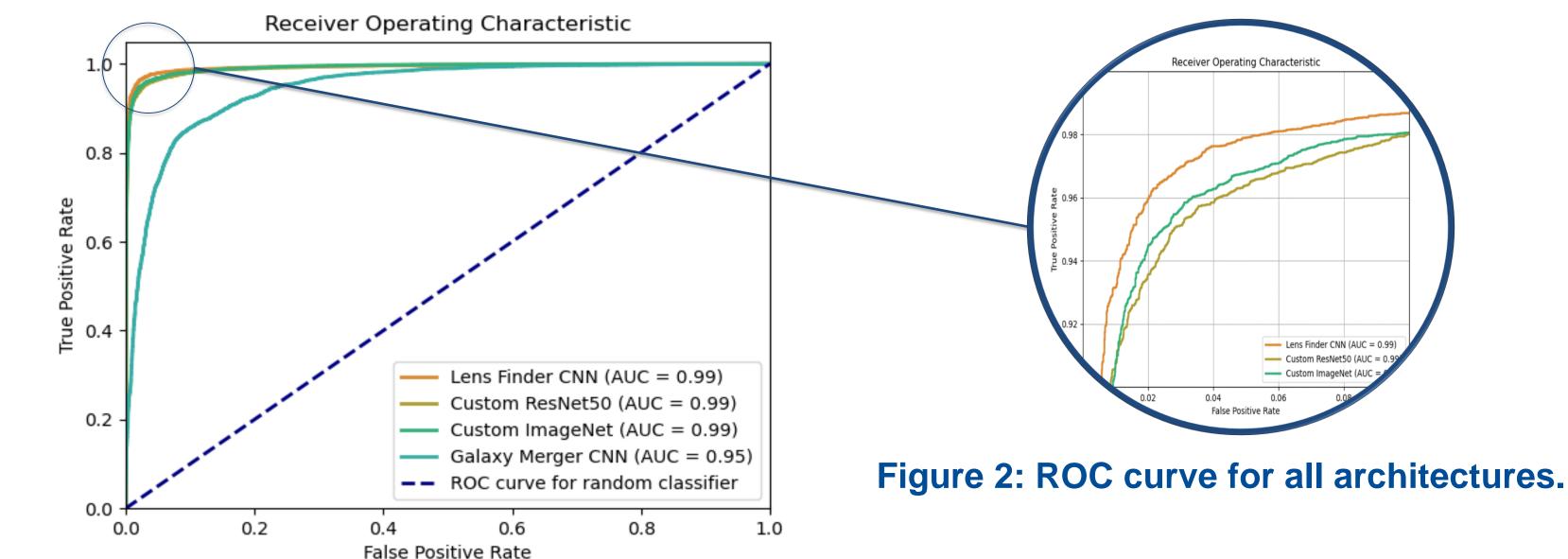

- Strong gravitational lensing is a phenomenon where a foreground galaxy acts as a powerful lens, bending and magnifying the light emitted from distant background sources.
- **Convolutional Neural Networks** (CNNs) are deep lacksquarelearning models designed for image classification, object detection, and segmentation. CNNs use convolutional layers to detect patterns and features in data.

CNN Architecture Comparison

Table 1: Depicts the similarities and differences between implemented architectures.

	Lens Finder	Galaxy Merger	ResNet50*	ImageNet*
Num Conv Blocks	4	3	5	4
Num Dense	3	2	2	3
Pre-trained	No	No	Yes	No
Dropout	Yes	Yes	No	No
Batch Norm	Yes	Yes	No	Yes

Applying CNNs to gravitational lensing studies requires specialized architectures and data handling due to the scarcity of strong lensing events and data.


Figure 1: Example of CNN architecture

Motivation & Purpose

- Detecting more gravitational strong lenses aids research on dark energy and dark matter.
- Visual inspection has been a primary method for strong lens detection after automated algorithms were created, indicating our need for improved methods.
- We aim to explore multiple architectures and

*Indicates those networks have been customized.

Results

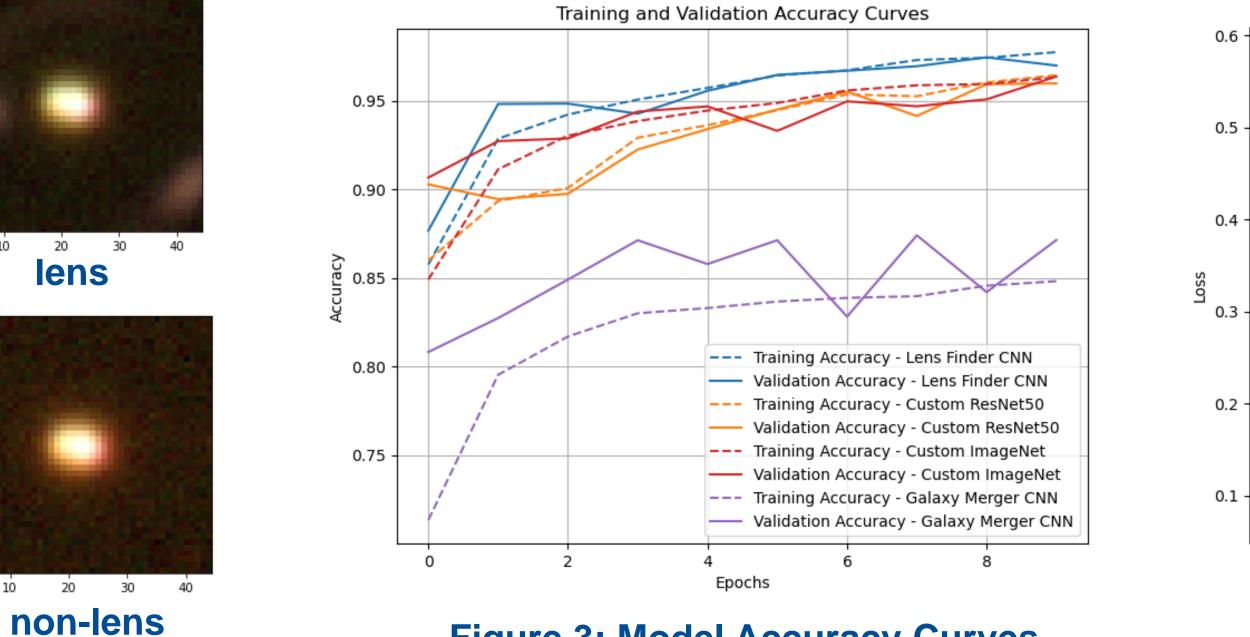
Table 2: Confusion matrix results for all architectures.

	True-Positive	False-Positive	False-Negative	False-Positive
Lens Finder CNN	8445	194	296	7723
Galaxy Merger CNN	8040	559	1545	6474
Custom ResNet50	8383	256	392	7627
Custom ImageNet	8445	194	421	7598

hyperparameters to optimize model performance while minimizing false positives with aim to classify strong lensing.

20

lens


20 30

Data & Methods

- Address a **binary classification problem** by training models on simulated data.
- Test various CNN architectures on one simulated dataset to compare architecture performance.
- Gain insight on the optimal architecture features for classification of strong lensing.

CNN Architectures Notes

- Lens Finder CNN and Galaxy Merger CNN models are custom CNN implementations with specific architectures.
- Custom ResNet50 uses a pre-trained ResNet-50 model from TensorFlow's Keras API.
- Custom ImageNet is a custom CNN architecture inspired by

Conclusions

• Lens Finder CNN achieved 97% accuracy while minimizing false positive and false negatives. These results suggest the combination of 4 convolutional blocks, 3 deep layers, dropout layers, and batch

the ImageNet model.

All architectures use **ReLU as the activation function** and Sigmoid as the output activation function.

References

1. Metcalf, R. B., et al. (2019, March 20). The strong gravitational lens finding challenge. arXiv.org. https://arxiv.org/abs/1802.03609 2. Murray, C., & Cohen, Y. (n.d.). Hello universe!. Classifying JWST-HST galaxy mergers with CNNs - Hello Universe! https://spacetelescope.github.io/hellouniverse/notebooks/hello-universe/Classifying_JWST-HST_galaxy_mergers_with_CNNs/Classifying_JWST-HST_galaxy_mergers_with_CNNs.html

3. Zaborowski, E. (2022). Identification of Galaxy-Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning. Retrieved from arxiv.org/abs/2210.10802

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

normalization effectively classify strong lensing in this dataset.

- **Custom ResNet50** and **Custom ImageNet** had similar performance to Lens Finder CNN, indicating that pre-trained models and varying convolutional and dense configurations are also effective for strong lens classification.
- Future work should individually optimize architectures' hyperparameters for improved performance and lens classification.
- Future training on multiple datasets will enable better comparisons \bullet and generalizability.

Training and Validation Loss Curves

Figure 4: Model Loss Curves

--- Training Loss - Lens Finder CNN

— Validation Loss - Lens Finder CNN – Training Loss - Custom ResNet50

--- Training Loss - Custom ImageNet

Validation Loss - Custom ResNet50

Validation Loss - Galaxy Merger CNN

 Validation Loss - Custom ImageNet --- Training Loss - Galaxy Merger CNN