Preliminary results on PDE measurement of the VD-XA in Napoli

F. Di Capua, N. Canci, G. Matteucci, G. Grauso, Y. Suvorov, R. Calabrese, G. Fiorillo Università di Napoli and INFN

A. A. Machado, E. Segreto, V. Pimentel

Campinas University

Universidade Federal de Alfenas

G. Valdiviesso

F. Terranova, C. Cattadori, C. Gotti, L. Meazza, A. Minotti

Milano Bicocca & INFN MI

D. Warner, K. Francis, Z. Rautio

Northern Illinois University

Outline

- Experimental setup for PDE Measurement
- Cryostat LAr filling
- Argon purity evaluation
- SPE (Single PhotoElectron) measurement
- Simulation
- Preliminary result for PDE

XA-VD measurement setup

- Megacell on mechanical structure connected to dome
- ²⁴¹Am source in Peek frame holder and connected to roto-translator
- Inside the cryostat has been inserted a black shielding made by Delrin along the cryostat mantle and on the top cover

²⁴¹Am source

DEEP UNDERGROUND NEUTRINO EXPERIMENT

XA-VD measurement setup

Dichroic filters mounting

- ZAOT filters evaporated in Campinas
- Mounted in Napoli clean room
- Light UV shielded during operations

Electrical connection and DAQ

- DMEM with two cold amplifier: preliminary tested in LN_2 : both channels working
- just before to close the cryostat one of two signal is not present: we changed position of one cold amplifier
- After LAr filling discovered that one channel is very noisy
- Output signals from second stage amplifier sent to CAEN V1725B digitizer

Measurement positions

- Ch1: square dimples
- Ch2: cylindrical dimples
- PMT for purity monitoring

Vacuum operations and LAr filling

- Pump and purge cycles before filling
- Due to large amount of materials vacuum level not better than 10⁻⁴ mbar
- The cryostat has been filled with LAr5.0 filtered by an in-line Trigon (Engelhard Q5-Cu0226)
- During all measurement operations cryostat is in overpressure (1.2 atm) with respect to external pressure

- Capacimeter level: the maximum correspond to 25 cm of LAr above Megacell
- Evaporation rate 4 cm/24h

Trigon filter

LAr purity estimated with PMT

- Two fitting procedures_
 - 3 exp. + gaussian
 - Single exp (tail only)
- Result of long tau component between 1.4-1.5 us
- Fit executed on muon sample

Monitoring of stability of LAr purity

- Purity is found stable in all the measurement period
- No purity correction to the measurement are required

SPE response at OV=4.5V

Channels: 1,2

Filter moving average

- Channel 1 very noisy
 → impossible to
 retrieve SPE
- Channel 2 is ok
- Vinogradov fit to photon statistics
- duplication factor 0.28

• *f_{CTAP}*=1.28

Alpha signal waveforms

Channel 1 noisy

Trigger on Channel 2

Alpha source events

- Non-gaussian shape of the amplitude spectrum
- Most likely this the effect of self-shielding of the source holder

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Source holder geometry

- Source holder window is 23 mm diameter
- Thickness of the holder edges is 6 mm: this induce a shielding of alpha particles
- Due to the holder shielding the alpha spectrum becomes flat
- **Charge spectrum** fitted with the convolution of a box function and a gaussian
- Alpha yield: 50% of right tail
- Alpha Spectrum has been corrected for secondary pulses (AP/CT)

Alpha spectrum: OV=4.5 V

1200

1200

700

800

- Trigger on ch2 due to lower noise
- Alpha events selected via prompt light (PSD)
 - Alpha distribution appears nongaussian due to source holder shielding
 - Alpha yield = fitted tail with the • convolution of constant + gaussian distributions=50% of the maximum on the right tail
- Measurement in six different • locations for the source
- Error (systematic) estimated by ۲ varying cuts

Alpha spectrum: PEs vs position@ OV=4.5V

Simulation (A. Machado, G. Valdiviesso)

Initial LY = 36000ph/MeV

Preliminary results for PDE@OV=4.5V

- Secondary pulse correction factor 1.28
- PDE found to be about 1.2-1.3 %

	PDE(%) @ OV=4.5V
Position	5 cm
P2	1.30 ± 0.08
Р3	1.16 ± 0.08
С	1.21 ± 0.08
P5	1.21 ± 0.08
P6	1.29 ± 0.08

SPE response at OV=7.0V

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Alpha spectrum: OV=7.0 V

- Alpha source analysis at OV=7.0V
- Spectrum includes corrections for secondary pulses (AP/CT)

Alpha spectrum: PEs vs position@ OV=7.0V

PDE summary (preliminary)

PDE summary (preliminary)

	PDE(%) @ OV=4.5V	PDE(%) @ OV=7.0V
Position	5 cm	5 cm
P2	$\boldsymbol{1.30\pm0.08}$	$\textbf{1.66} \pm \textbf{0.12}$
P3	$\textbf{1.16} \pm \textbf{0.08}$	$\textbf{1.48} \pm \textbf{0.12}$
С	$\textbf{1.21} \pm \textbf{0.08}$	$\textbf{1.54} \pm \textbf{0.12}$
P5	$\boldsymbol{1.21\pm0.08}$	$\textbf{1.54} \pm \textbf{0.12}$
P6	$\textbf{1.29} \pm \textbf{0.08}$	$\textbf{1.65} \pm \textbf{0.12}$

Error evaluation is very preliminary:

- SPE response: 5%
- Source PE fitting procedure: <5%
- Simulation: initial LY???
- Systematics in source positioning to be evaluated

Megacell warming

- At the moment the Megacell is still in the cryostat
- LAr evaporated and the level is now below the X-Arapuca
- Nitrogen gas flushing during warmup phase
- Environment full saturated with Argon and Nitrogen gas

Conclusions

- A preliminary evaluation of the PDE of XA-VD system equipped with ZAOT filters and FBK SiPM has been performed
- Self shielding of the source holder introduced some issue in the analysis
- One channel found to be very noisy: SPE evaluated only on the good channel
- Attempt to re-schedule a new measurement in September, changing the holder and collimating the source, check if there is no filter degradation

