PMTs in ProtoDUNE-VD

Enrique Calvo, **Clara Cuesta**, Inés Gil-Botella, Ignacio López de Rego, Carmen Palomares, Antonio Verdugo (CIEMAT); José Soto (IFIC); Pablo Barham, Benoit Lacarelle, Francesco Pietropaolo, Filippo Resnati (CERN)

August, 1st 2023

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Proposal

Installing 24 PMTs from ProtoDUNE-DP in ProtoDUNE-VD, outside the field cage.

Physics goals

- Cross-check of photon detection efficiency X-ARAPUCA measurement using PMT efficiency as reference.
- Study of scintillation light production, propagation and absorption in LAr with Xe doping.
- 3. Monitoring purposes:
 - τ_{slow} to monitor liquid argon purity (1.45 ± 0.2 µs, monitored regularly in ProtoDUNE-DP indicating LAr purity at ppb level).
 - Identify HV discharges.

Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC, EPJC 82 (2022) 618

ProtoDUNE-DP PMTs

36 8" cryogenic photomultipliers (PMTs) JINST 13 (2018) T10006 JINST 15 (2020) P09023

Wavelength-shifter: PEN / TPB coating on PMT

Voltage divider base + single HV-signal cable + splitter (external)

Light calibration system: LED (external) & fiber based <u>JINST 14 (2019) T04001</u>

DAQ system (external) IEEE Trans Nucl. Scie. 68 (2021) 2334

Proposed Layout

Horizontal PMTs

- PMTs looking towards the field cage at the same distance than the X-ARAPUCAs and at the same height. This simplifies the photon detection efficiency measurement.
- TPB coated PMTs as they have better efficiency.
- PMT support designed reusing ICARUS structure. Material available at CERN. (F. Pietropaolo, B. Lacarelle).
- 75% transparency ground grid available at CERN: <u>Gantois - Toile Tissée - VIDE2FIL0.315gantois.com</u>

PMT simulation

- PMT geometry implemented in ProtoDUNE-VD simulation (P. Barham).
- Full light simulation for PMTs in process taking into account updated reflectivity values.
- ProtoDUNE-VD geometry being completed: missing realistic field cage.
- Will create visibility maps to validate light arriving to horizontal PMTs is comparable to light arriving to wall X-ARAPUCAS to carry out a relative photon detection efficiency measurement.
- Will use muon tracks as beam does not cross bottom volume.

PMT Installation

- Long cables and flanges are still installed in ProtoDUNE-VD.
- Only need to place PMTs after other subsystems are installed: introduce them before closing TCO and final placing can be done through manhole.
- Calibration light fibers are also installed, need to install the fiber bundles with the PMTs.

PMT DAQ

- PMT integration in DAPHNE under testing at CIEMAT:
 - Sampling rate 16 ns.
 - External trigger (cosmic-ray taggers, TPC), self-trigger in coincidence (to be programmed).
 - Sync with TPC same as X-ARAPUCAs.
- Interfaces of power supply with other systems (purity monitors, cameras, etc) to be determined.
- As a backup solution there is a stand-alone PMT DAQ available at NP02: Based on ADC CAEN V1740 and controlled by a PC running MIDAS software and a custom software developed at CIEMAT to integrate the control of the power supplies, the calibration light source and the ADC (throw MIDAS). The light readout front-end was connected to the White Rabbit network for synch with the global DAQ by means of a PCI WR End-node (SPEC card) plugged into the LRO DAQ PC.

Summary

- Proposal for installing 24 PMTs from ProtoDUNE-DP in ProtoDUNE-VD
- Physics goals: photon detection efficiency measuremen, study of LAr scintillation light with Xe doping and monitoring.
- Successful PMT operation in ProtoDUNE-DP: stable and understood performance
- On time for installation and data taking: everything available at Neutrino Platform, light calibration system ready, DAPHNE DAQ, PMTs implemented in simulation.

ProtoDUNE-DP PMT performance

- Time accuracy among the PMTs for the same event better than 16 ns measured.
- Remarkable low noise in baseline (0.6 \pm 0.1 ADC).
- Single photo-electron characterization (amplitude, width) as a function of gain. S/N > 11 at 10^7 gain.
- PMTs calibrated weekly to determine the PMT gain and measure light collected in PE.

PMT gain stable despite PMTs are switched on daily. (9% gain STD at 1500 V, average 36 PMTs)

ProtoDUNE-DP PMT results

Light propagation in LAr

- ProtoDUNE-DP, the longest drift-distance LAr TPC ever operated → unprecedented study of the light propagation.
- Evaluation of the simulated Rayleigh scattering length.
 - Better agreement between data and the 99.9cm MC sample than with the 61.0-cm value.
 - Light will undergo Rayleigh scattering before being deeply attenuated due to absorption by LAr impurities or detector elements (excellent LAr purity & large free LAr volume).
- Study of the VUV-photon reflections show that >11 % of the light detected PMTs in the MC from reflected VUV-light in Al or stainless steel.

Parameter	λ_{att} (from fit)	
Data	180 ± 17 cm	
MC (RSL 99.9 cm)	180 ± 10 cm	
MC (RSL 61.0 cm)	157 ± 8 cm	

ProtoDUNE-DP PMT results

Wavelength shifting: PEN & TPB

- Wavelength shifting required as PMTs are not sensitive to LAr scintillation light in VUV.
- Two methods in ProtoDUNE-DP:
 - PMTs covered with PEN foils, a novel thermoplastic simple to install.
 - TPB coated in a dedicated set up directly over the PMT glass.
- ProtoDUNE-DP results:

Analysis	Value	Result	Comment
Lab measurement1	ϵ_{TPB}	1.5 ± 0.3	
PMT-trigger data	$\epsilon_{\text{PEN}}/\epsilon_{\text{TPB}}$	0.35 ± 0.09	
	ϵ_{PEN}	0.50 ± 0.17	Assuming 1
CRT-trigger data	$\epsilon_{\rm PEN}/\epsilon_{\rm TPB}$	0.32 ± 0.07	
	€PEN	0.39 ± 0.05	From simulation
	ϵ_{TPB}	1.2 ± 0.2	From simulation
Weighted average	$\epsilon_{\rm PEN}/\epsilon_{\rm TPB}$	0.33 ± 0.05	