<u>Radioactive Source Deployment System</u> (RSDS) Update

Juergen Reichenbacher, Evan Norenberg, Tyler Rath, Gleb Sinev and James Haiston (South Dakota School of Mines & Technology)

CALCI Phone Meeting Sept. 7, 2023

Formerly Optimized Geometric Configuration with Standalone G4 Simulations for Most Effective 9 MeV γ-Ray Production

Optimized RSDS configuration:

 \Rightarrow needs to be implemented in LArSoft geometry/simulation

RSDS Only Near Top Deployed But Sim Check at Half Height of Upper APA (TGeo Validation/Screenshots of Implementation of RSDS in <dune10kt_1x2x6_v4.gdml> for LArSoft Input)

Neutron Capture Locations in Ni200 Rods from LArSoft RSDS Simulation Validating Physics & Correct Placement of RSDS in dune10kt_1x2x6v4.gdml

Neutron Capture Interactions in xz Plane of Ni200 Rods

9/7/2023

4

Resulting Energy Spectrum of γ-Rays Making it into the APA Volume in LArSoft RSDS Simulation

Total Gamma-Ray Energy per Event Deposited Inside APA Volume:

82k neutrons generated with AmLi source at RSDS center result in 2.2k 9 MeV gamma-rays inside the single APA volume: => 2.6% efficiency despite half of solid angle available only and two attenuation lengths min. path to enter APA!

Resulting RSDS Interactions in Single APA Drift Volume with LArSoft RSDS Simulation Using 1x2x6 Geometry with RSDS Implementation:

Comparison of γ-Ray Spectra inside APA Volume: Geant4-10-06-p02 Standalone RSDS Simulation Vs. LArSoft v08_60_00 e19:prof RSDS Simulation

Total Gamma-Ray Energy per Event Deposited in APA Volume:

7

Successful Cryo Testing of RSDS Components at SD Mines

Thermal expansion measured 1% for Delrin (<2% MSDS)

Successful mechanical strength tests before/after LN2:

9/7/2023

Submerge in LN2 (85 K) in dewar::

Thermal expansion measured 0.5% for nickel rod:

Diamond braid nylon lanyard worked great (cryo elastic, very stable strength)!

Anchor nylon line got too stiff:

Juergen Reichenbacher, SDSMT

-> Prepared ASTM tests for cryogenically tested & selected parts: Braided paracord, Delrin bar & fishline

8

Top Half of Business End of RSDS with 3 Paracord Attachments

Bottom Half of Business End of RSDS

Solid attachments to nickel rods near equator Such that nickel rods carry the weight and to eliminate shrinkage gap at equator and to provide a very solid joint of upper and lower Delrin halves

Final rounding (after successful tests)

Fabricated Business End of RSDS with Cut and Inserted Nickel Rods

Current Step: Validate High Energy y-Ray Yields of RSDS

Physical setup of 'Rabbit' γ-ray BEGe detector

Our 'Rabbit' BEGe detector provides a uniquely large sample chamber of $12'' \times 12'' \times 12.4''$. This will provide the space required to assay the bulky RSDS' γ -ray emission.

Solidworks model of fast moveable shielding (using rails) with cryostat of 'Rabbit' detector

Solidworks drawing of 'Rabbit' γ-ray BEGe detector with shielded inner assay chamber

=> Use existing Cf-252 neutron source instead for initial test (and other Ge-detector)

Next Step: Underground Testing of RSDS for Residual Neutron Emission at SURF

SDSMT previously developed He-3 hodoscope for LZ experiment with test stand enclosure to be used in assaying of the residual neutron emission rate of the RSDS optimized configuration

Accordion-like construction allows for safely locking up source during long measurement (SURF requirement)

He-3 proportional counters

Planned Deployment Testing of RSDS in our High-Bay Lab at SD Mines

Side view of source deployment into cryostat:

Rotated side view of source deployment into cryostat:

Scaffold tower in our high bay for mechanical mock-up testing:

9/7/2023 Juergen Reichenbacher, SDSMT 14 => Plan also external deployment of RSDS business end outside of small LArTPC

Neck extension with our RSDS deployment box mounted above gate valve as we did for LZ at SURF

Juergen Reichenbacher (SDSM&T)

3/10/2022

Summary and Outlook

- Successful implementation of the RSDS geometry into the 1x2x6 geometry GDML file, and successful simulation of RSDS in LArSoft by generating AmLi neutrons at center of RSDS.
- LArSoft RSDS simulation demonstrates that 9 MeV gamma-rays are produced at a very efficient rate per AmLi neutron. However, more checks on physics list need to be done for both for standalone G4 and LArSoft simulation.
- RSDS materials required for a physical RSDS have been acquired

=> cryo testing of materials/RSDS has been successful!

=> machining of RSDS business end is done!

 Underground neutron test bed ready with safety officer approved enclosure structure for SURF. Germanium based gamma-spectrometer is calibrated with high energy gamma-rays from tagged AmBe neutron source

 $=> \gamma$ -ray measurement of RSDS w/ inner Cf-252 source underway!

 Cf-252 (5 kBq – 10 kBq already on SDSMT and SURF license) with Delrin moderator seems to be a viable fast interim solution for RSDS demonstrator (proof of principle) to be employed exteriorly at small test LArTPC (CSU?)