
Streaming Infrastructure for Frequency Multiplexed
Sensors

Sarah Marmolejos
URA - FRA Undergraduate Women in STEM Intern 2023

Wake Forest University

Supervisor: Leandro Stefanazzi

ABSTRACT
The recent development of a firmware, Qick (Quantum Instrumentation Control Kit), has brought the
need for the continuous streaming of data from devices utilizing it. It was initially created for the readout
and control of frequency multiplexed sensors called Microwave Kinetic Inductance Detector (MKID). A
number of larger scale projects have begun utilizing the firmware, and it is beneficial to provide remote
data streaming. To address this, I have programmed a Field Programmable Gate Array (FPGA) board to
take in data produced by the memory buffer, have it packetized, then sent over the network using User
Datagram Protocol (UDP). The lack of handshaking involved in this communication protocol is what
makes it ideal for transferring large amounts of data from a device, as it would drastically reduce
transport time. This process required that I develop a basic server to capture the data from the buffer, so
that it may be sent to a client device.

I. INTRODUCTION
Microwave Kinetic Inductance Detectors are
photon detectors that are commonly used in
astrophysics and other astronomical sciences
due to the fact their sensors can be easily
multiplexed into larger array structures. This
allows them to be able to read out thousands of
pixels over one microwave cable.

Fig. 1. (a)Activity of quasiparticles in superconducting film,
(b) High Frequency planar resonant circuit. (c) resonator
response in phase (d) of microwave signal [2]. .

When an MKID is hit by a photon, its
superconducting properties change the kinetic
inductance of the device and result in a
frequency shift on the resonator. This is shown
by the phase shift in (a) and (b) of Fig.1.

Fig. 2 Parallel
resonator circuit,
using an inductor
(L), a capacitor (C),
and a resistor (R).

In this way, MKIDs behave similarly to resonator
circuits, as the frequency of some oscillations
are allowed to pass, while others are limited by
the resistance. The integration of hundreds, or

1



thousands of resonators on 2Gz of bandwidth
requires a more complex system of readout and
control. This need is what led the Quantum and
Astrophysics department at Fermilab to develop
the Quantum Instrumentation Control Kit (QICK).
Although this controller is broad in the coverage
of its potential usage, it's worth noting that it
can be used to excite many MKIDS using a
single frequency feed line.

Modern FPGAs typically include a processing
system, which is a multicore system with DDR
memory, and run a standard operating system
like Linux.
For this project, the ZCU111 evaluation board
was programmed with its own server that would
be able to send data to a client, in this case, a
PC.

Fig. 3. Firmware implementation with 4 independent RF
feed-lines [1].

Cutting-edge FPGA devices allow high logic
integration of complex blocks, which allows for
more than one independent RF feed line per
FPGA chip. This reduces the overall complexity
of a system with a large number of channels or
pixels, like a telescope. It is in the interests of
several of the larger scale projects at Fermilab
to have the ability to stream data continuously
from an FPGA, all of which would be using an
Ethernet network connection.

III. METHODS

Fig. 5. The ZCU111 board was used in the later stages of
this project. Highlighted are the RFSoC (software, firmware,
RF, and processor components) and the RF board. The RF
blocks include the ADC (analog to digital), DAC (digital to
analog), and digital output.

Pyro, a python library that allows objects to
interact over a server, was instrumental to this
process. Unique to Pyro is the Name Server, a
tool that allows the user to keep track of objects
by using a logical name rather than an ID [4]

A. FPGA Programming
Field Programmable Gate Arrays (FPGAs) are
integrated circuits that have a programmable
fabric made up of logic blocks. However,
some can make use of higher level
programming by including additional interface
functions and components.

Fig. 4. This project mostly involved higher level
programming of the FPGA using a Jupyter Notebooks
environment,
several python libraries, and the Ubuntu linux OS [1].

B. User Datagram Protocol (UDP)
User Datagram Protocol (UDP) is a type of
communication protocol that doesn’t require
any handshaking when transferring data.

Fig. 6. After an initial request is received, a device will
continuously send information until the process is
complete.

2



This communication protocol tends to be less
secure, as it does not require that the server
checks to see if its message was received.
However, it is more convenient to use when
taking speed into account.

Fig. 7. TCP (Transmission Control Protocol) communication
consists of three steps in its handshaking process. First, it
establishes a connection (SYN). Then another device
synchronizes and acknowledges the message (SYN-ACK).
Finally, this device sends the acknowledgement back (ACK).

This differs from TCP, which is typically used for
more secure communication such as emails or
banking transactions. TCP uses a multi-step
handshaking process that would take much
more time to send large amounts of data.
For this project, we had used the Pyro library to
establish a UDP-network broadcast to send the
data generated by the firmware to the PC client.

C. Implementation
Fig. 9. Shows how information moved through
the system. It is through the ethernet
connection that the PC sends a request to the
ZCU111. From there, the server that is running
on the ZCU11 will interact with the counter,
streamer, and DMA to send the requested
information to be handled by the processing
system, which will then be sent back to the
client PC.

Fig. 9. Block diagram showing the connections between
different components. The PC has an ethernet connection
with the ZCU111 board, and acts as the client. The ZCU111
firmware utilizes a counter, streamer, and DMA (direct
memory access) hardware blocks.

Fig. 10. provides a visual representation of the
system validation from the counter block. The
streamer is what allows the data to be sent over
the network for further processing. While Fig.10.
was generated by the QICK firmware on the
ZCU11, it does not show the data being sent
over the network. However, the plot would have
remained unchanged if it had. The final step in
this process was to send the data generated by
the firmware to the client PC.

Fig. 10. This plot was obtained after programming the
ZCU111 to produce data. The board is plotting points from
the counter, which resets to zero after reaching a set limit.
The plot shows two counters, with limits of 500 and 100.

3



IV. CONCLUSIONS
During this process we had been able to
successfully establish a constant connection
between a server running on the ZCU111 FPGA
board and the client PC. The firmware had
acted as the testing environment that was
needed to simulate the conditions of an
experiment. The next steps in the process
would be to change the source of the data,
rather than have it produced by the firmware.

ACKNOWLEDGEMENTS
I would like to give thanks to my supervisor
Leandro Stefanazzi for all of his support during
this project. Special thanks to the URA and
Fermilab for allowing me to participate in
research this summer.

REFERENCES
[1] L. Stefanazzi et al., “The QICK (Quantum
Instrumentation Control Kit): Readout and control for
qubits and detectors,” Review of Scientific Instruments,
vol. 93, no. 4, p. 044709, Apr. 2022, doi:
10.1063/5.0076249.
[2] A.O. El-Rayis et al., “Reconfigurable architectures for
the next generation of mobile device telecommunications
systems, ” Nov. 2014.
[3]“http://web.physics.ucsb.edu/~bmazin/public_html/mki
ds.html,” web.physics.ucsb.edu.
https://web.physics.ucsb.edu/~bmazin/mkids.html
[4] “Pyro - Python Remote Objects - 4.82 — Pyro 4.82
documentation,” pyro4.readthedocs.io.
https://pyro4.readthedocs.io/en/stable/ (accessed Aug.
02, 2023).

 

4

https://doi.org/10.1063/5.0076249
https://doi.org/10.1063/5.0076249
https://web.physics.ucsb.edu/~bmazin/mkids.html
https://web.physics.ucsb.edu/~bmazin/mkids.html

