DUNE-PRISM: Data-driven Wrong Sign Background prediction

loana Caracas on behalf of DUNE – PRISM working group

LBL Meeting

07.08.2023

DUNE-PRISM

2

- DUNE-PRISM aims to be robust to cross section modeling → data-driven prediction of the FD oscillated spectrum
- Main cross section systematics enter the analysis via:
 - Efficiency correction (work in progress see Wei's talk)
 - **FD background** (obtained from MC):
 - miss-identified $\overline{\nu_\tau}$ + ν_τ
 - wrong lepton (i.e mu for appearance and e for disappearance channel)
 - neutral current
 - intrinsic $\overline{v}_e + v_e \rightarrow right$ sign intrinsic v_e predicted on a data-driven approach (Wei)
 - wrong sign background

• Wrong Sign (WS) and intrinsic WS background dominate the background

- \rightarrow predict these components on a data-driven approach \rightarrow reduce cross section modeling dependency
- Ioana Caracas | DUNE-PRISM: Data-driven Wrong Sign Background (WSB) prediction

PRISM Prediction – Wrong Sign Background (WSB) data driven approach

- Total WSB (intrinsic + WS from beam contamination) can be predicted on a data driven approach
 - $\succ \text{ example for } \overline{\nu_{\mu}} \rightarrow \overline{\nu_{\mu}} \text{ channel: WSB} = \text{intrinsic } \nu_{e} \rightarrow \nu_{\mu} + \nu_{\mu} \rightarrow \nu_{\mu}$

• PRISM Prediction WSB is then added to the FD background instead of the MC WS spectra

Wrong Sign Background (WSB) data driven – flux uncertainties

- Use the ND data from the opposite channel (**FHC** v_{μ} mode) to match the target FD WSB (intrinsic WS v_e + WS v_{μ}) flux (**RHC** v_{μ} mode)
- Main concern: flux uncertainties (graphs and study by Anna Stepanova)

Wrong Sign Background (WSB) data driven – Disappearance anti-neutrino channel

• WSB Prediction = $v_{\mu} \rightarrow v_{\mu}$ from beam contamination + intrinsic $v_e \rightarrow v_{\mu}$ beam contamination

JGU DUNE

Ioana Caracas | DUNE-PRISM: Data-driven Wrong Sign Background (WSB) prediction

Wrong Sign Background (WSB) data driven – Disappearance anti-neutrino channel

• WSB Prediction = $v_{\mu} \rightarrow v_{\mu}$ from beam contamination + intrinsic $v_e \rightarrow v_{\mu}$ beam contamination

Ioana Caracas | DUNE-PRISM: Data-driven Wrong Sign Background (WSB) prediction

Wrong Sign Background (WSB) data driven – Appearance anti-neutrino channel

• WSB Prediction = $v_{\mu} \rightarrow v_e$ from beam contamination + intrinsic v_e beam contamination

WSB Prediction

Wrong Sign Background (WSB) data driven – Appearance anti-neutrino channel

• WSB Prediction = $v_{\mu} \rightarrow v_{e}$ from beam contamination + intrinsic v_{e} beam contamination

8

Wrong Sign Background (WSB) data driven – Oscillation fits

- Nominal stats only
- 4 Flavours: $v_{\mu} + v_e + \overline{v}_{\mu} + \overline{v}_e$

No significant shift in the nominal case between the two different scenarios
→ no additional bias included

Wrong Sign Background (WSB) data driven – Oscillation fits

- Systematics included: flux + Xsec
- 4 Flavours: $v_{\mu} + v_e + \overline{v}_{\mu} + \overline{v}_e$

• No significant improvement in Xsec systs when WSB is predicted on a data-driven approach

PRISM WSB Prediction – Flux correction

Different fitting ranges and regularization parameters have a direct influence in the flux correction (MC component)
→ could this influence the oscillation fit..?

PRISM WSB Prediction – Flux correction

Different fitting ranges and regularization parameters have a direct influence in the flux correction (MC component)
→ could this influence the oscillation fit..?

PRISM WSB Prediction – Flux correction

Different fitting ranges and regularization parameters have a direct influence in the flux correction (MC component)
→ could this influence the oscillation fit..?

- **PRISM no WSB** prediction: WSB from MC with the corresponding systematic shift
- **PRISM with WSB**: WSB from data-driven approach (different fit ranges)

 \rightarrow no significant difference when different flux corrections are used

4 flavors fit: $v_{\mu} + v_e + \overline{v}_{\mu} + \overline{v}_e$ ${}^{\Delta}\chi^{2}$ No Systs - No WSB 140 No Systs - With WSB 120 PRISMPred - No WSB 100 **PRISMPred** - With WSB $E \in [0.5, 5.5], \lambda = 2.2E-16$ 80 **PRISMPred** - With WSB $E \in [0.5, 6], \lambda = 2.5e-17$ Exposure = 336 kt-MW-yr 60 40 ····· 20 2.3 2.35 2.4 2.5 2.55 2.45 $\Delta m_{32}^2 (10^{-3} \text{ eV}^2)$

- **PRISM no WSB** prediction: WSB from MC with the corresponding systematic shift
- **PRISM with WSB**: WSB from data-driven approach (different fit ranges)
- Ideal case: no systematic shift in the WSB component (artificially turn off the syst shifts within the classic – WSB from MC PRISM prediction)

- **PRISM no WSB** prediction: WSB from MC with the corresponding systematic shift
- **PRISM with WSB**: WSB from data-driven approach (different fit ranges)
- Ideal case: no systematic shift in the WSB component (artificially turn off the syst shifts within the classic – WSB from MC PRISM prediction)

No significant difference between the resulting fits (with/without WSB) with Xsec systs \rightarrow maybe the flux correction is not the main source of systematics...

→ Turn off the syst shift in the ND efficiency correction used for the WSB prediction on a data-driven approach

- **PRISM no WSB** prediction: WSB from MC with the corresponding systematic shift
- **PRISM with WSB:** WSB from data-driven approach (different fit ranges)
- Ideal case: no systematic shift in the WSB component (artificially turn off the syst shifts within the classic – WSB from MC PRISM prediction)
- **PRISM with WSB no syst shift in WSB ND efficiency calculation:** WSB from data-driven approach no shift in ND efficiency

• The main source of systematics comes from the efficiency calculation: for the WSB prediction the efficiency calculation enters the analysis individually (I.e we use the efficiency calculation two times: once for the classic PRISM prediction of the oscillated spectrum + once for the WSB prediction)

> → the improvement in using the WSB prediction is canceled by the additional Xsec dependence introduced via the efficiency calculation

• This should not be a problem once the ND efficiency correction is implemented on a datadriven approach (work in progress by Wei)

4 flavors fit: $v_{\mu} + v_e + \overline{v_{\mu}} + \overline{v_e}$

PRISM Prediction with a WSB data-driven approach: Conclusions

- The WSB prediction on a data-driven approach is fully implemented (code has been pushed on github some time ago) and works as desired
- Once the efficiency correction (data-driven) is implemented, the improvement obtained in the oscillation fits is very close to the ideal case of a "no-syst" WSB
- The data-driven wrong sign background plays a **crucial role in the fake data PRISM analysis** and bias reduction (see Ciaran's talk next week)

- a separate individual study (extreme case of lower/higher cross sections by 1 order of magnitude) has been performed and shows how significantly lower biases are obtained when the WSB is obtained in a data-driven way

PRISM Prediction with a WSB data-driven approach: Conclusions

- The WSB prediction on a data-driven approach is fully implemented (code has been pushed on github some time ago) and works as desired
- Once the efficiency correction (data-driven) is implemented, the improvement obtained in the oscillation fits is very close to the ideal case of a "no-syst" WSB
- The data-driven wrong sign background plays a **crucial role in the fake data PRISM analysis** and bias reduction (see Ciaran's talk next week)

- a separate individual study (extreme case of lower/higher cross sections by 1 order of magnitude) has been performed and shows how significantly lower biases are obtained when the WSB is obtained in a data-driven way

Thank you!

Wrong Sign Background (WSB) data driven – Study case

- Shift the cross section (FrInelPi) by a given weight → see how does this influence the PRISM prediction and oscillation fits within the two scenarios: WSB from MC vs WSB data-driven
- Include only FrInelPi cross section systematics and apply +1 σ shift

→ Significantly smaller shifts when the WS background is predicted on a data-driven approach

Wrong Sign Background (WSB) data driven – Study case

- Shift the cross section (FrInelPi) by a given weight → see how does this influence the PRISM prediction and oscillation fits within the two scenarios: WSB from MC vs WSB data-driven
- Include only FrInelPi cross section systematics and apply +1 σ shift

→ Significantly smaller shifts when the WS background is predicted on a data-driven approach

Wrong Sign Background (WSB) data driven – Study case Oscillation fits

 \rightarrow Much better agreement (2 σ) of the resulted Δm_{32}^{2} with the true value in the case of WSB obtained from a data-driven approach

PRISM Prediction – Wrong Sign Background (WSB) data driven approach

• **PRISM Prediction WSB** is then added to the FD background instead of the MC WS spectra

Wrong Sign Background (WSB) data driven – Disappearance neutrino channel

• WSB Prediction = $\overline{V}_{\mu} \rightarrow \overline{V}_{\mu}$ from beam contamination + intrinsic $\overline{V}_{e} \rightarrow \overline{V}_{\mu}$ beam contamination

Muon neutrino disappearance $v_{\mu} \rightarrow v_{\mu}$

Wrong Sign Background (WSB) data driven – Disappearance neutrino channel

• WSB Prediction = $\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$ from beam contamination + intrinsic $\overline{v}_{e} \rightarrow \overline{v}_{\mu}$ beam contamination

Vis. E_{rec.} (GeV)

IGL

Wrong Sign Background (WSB) data driven – Appearance neutrino channel

• WSB Prediction = $\overline{V}_{\mu} \rightarrow \overline{V}_{e}$ from beam contamination + intrinsic \overline{V}_{e} beam contamination

WSB Prediction

Electron neutrino appearance $\nu_{\mu} \rightarrow \nu_{e}$

Wrong Sign Background (WSB) data driven – Disappearance neutrino channel

• WSB Prediction = $v_{\mu} \rightarrow v_{\mu}$ from beam contamination + intrinsic $v_e \rightarrow v_{\mu}$ beam contamination

29 Ioana Caracas | DUNE-PRISM: Data-driven Wrong Sign Background (WSB) prediction

