The Impact of the Solar Parameters within DUNE (+ ρ)

Josiah Tusler *LBL Meeting* 7 August, 2023

Part 1 – Solar Parameters

Why Care About Solar Parameters in DUNE?

- Currently we use external experiments for DUNE simulations:
 - $\Delta m_{21}^2 = 7.39 * 10^{-5} \text{ eV}^2$ (2.8% uncertainty)
 - $\theta_{12} = 0.5903$ radians (2.3% uncertainty)
 - $(\sin^2 2\theta_{12} = 0.855)$
- Three Big Questions:
 - Does varying the solar parameters affect v_e (& \bar{v}_e) detections in DUNE?
 - Can we measure the solar parameters within DUNE?
 - Does varying the solar parameters lead to a higher sensitivity other oscillation parameters in DUNE? (Denton 2023)

Why Care About Solar Parameters in DUNE?

- Currently we use external experiments for DUNE simulations:
 - $\Delta m_{21}^2 = 7.39 * 10^{-5} \text{ eV}^2$ (2.8% uncertainty)
 - $\theta_{12} = 0.5903$ radians (2.3% uncertainty)
 - $(\sin^2 2\theta_{12} = 0.855)$
- Three Big Questions:
 - Does varying the solar parameters affect v_e (& \bar{v}_e) detections in DUNE? \rightarrow Not substantially
 - Can we measure the solar parameters within DUNE? \rightarrow No
 - Does varying the solar parameters lead to a higher sensitivity other oscillation parameters in DUNE? (Denton 2023) → Not really

ROCHESTER DUNE

Investigating the Solar Parameters

- Assume less by varying and uncosrtraining the solar parameters
- Two ways to investigate the impact:
- $v_e \& \bar{v_e}$ spectra (CAFANA)

5

- Solar parameter's impact on neutrino detections
- Oscillation parameter measurements (TDR)
 - DUNE's capability of measuring the solar parameters
 - Solar parameter's impact other oscillation parameters' sensitivity

Solar Parameters and v_e Detections

6

Solar Parameters and v_e Detections

• Biggest effect in lower energy ranges (0-1GeV & 2-4GeV) ($\sigma = 2\%$ of nominal value)

7

Solar Parameters and $\overline{\nu}_e$ Detections

FD RHC Nue total FD RHC Nue total Number of Events Per Bin Number of Events Per Bin 200 200 150 150 100 100 Δm_{21}^2 Values (10⁻⁵ eV²) sin²2012 Values $\Delta m_{21}^2 = 6.97$ $\sin^2 2\theta_{12} = 0.815$ $\Delta m_{21}^2 = 7.18$ $\sin^2 2\theta_{12} = 0.835$ $\Delta m_{21}^2 = 7.39$ $\sin^2 2\theta_{12} = 0.855$ 50 50 $\Delta m_{21}^2 = 7.60$ $\sin^2 2\theta_{12} = 0.875$ $\Delta m_{21}^2 = 7.81$ $\sin^2 2\theta_{12} = 0.895$ 6 8 2 6 10 10 Reconstructed Neutrino Energy (GeV) Reconstructed Neutrino Energy (GeV) • Fairly unaffected $\bar{\nu}_e$ detections

ROCHESTER DUNE

Solar Parameters and $\overline{\nu}_e$ Detections

Biggest effect in lower energy ranges (0-1GeV & 2-4GeV)

9

7 Aug. 2023

TDR Simulations – Unconstraining the Parameters

• Fixed true values

7 Aug. 2023

10

Varied Best-Fit values

Solar Parameter Sensitivity -Constrained

- Simulated Resolutions are higher than External Constraint (nominal*penalty)
 - 23x more resolute for Δm^2_{21}
 - 4x more resolute for θ_{12}
- Two Possibilities:
 - Measurement Driven
 - Inconsequential

ROCHESTER DUNE

Solar Parameter Sensitivity -Unconstrained

- Simulated Resolutions are still higher than the External Constraint
 - 3x more resolute for Δm^2_{21}
 - 10x more resolute for θ_{12}
- Inconsequential

12

- Different Resolutions between constrained and unconstrained
 - Solar parameters are ultra sensitive to penalty
- Solar Parameter's can't be measured in DUNE

"Fixing" True θ_{12}

- Chopped off widely varying true values until the number of throws was close to the number of throws in the unconstrained simulations
- "Fixing" True θ_{12} worsened δ_{CP} resolution

13

Sensitivity of Other Oscillation Parameters (Fixed True θ_{12})

Oscillation Parameter Resolutions	$\delta_{CP}~(\pi)$	$\sin \theta_{23}$	$ heta_{13}$	$\Delta m^2_{32}~(10^{-3}~{\rm eV^2})$
Constrained Parameters	0.120	0.0120	0.00561	0.0235
θ_{12} Unconstrained	0.117~(-2.3%)	0.0116~(-2.7%)	0.00548~(-2.3%)	0.0232~(-1.32%)
Δm_{21}^2 Unconstrained	0.117~(-2.2%)	0.0117~(-2.4%)	0.00560~(-0.068%)	0.0235~(-0.044%)
Both Unconstrained	0.117~(-2.2%)	0.0116~(-2.5%)	0.00562~(0.213%~)	0.0236~(0.33%)

Table 1: Table containing of all the non-solar oscillation parameters in simulations with different constrained and unconstrained solar parameters. Constrained parameters have a penalty value at 2%, and the unconstrained parameters have a penalty at 20%. The percentages in the parentheses are the percent differences from the constrained resolution value of that parameter.

- Virtually no effect on resolutions
 - % Differences ~2%

14

- **Slight* improvement in δ_{CP} , θ_{23}
 - Added "wiggle room" in the fitter
 - Constrained data had varying true θ_{12} and ρ while unconstrained simulations had all fixed true values

"Fixing" True ρ

~60,000 experiments

15

~10,000 experiments

• Fixing true ρ causes resolutions to improve and eliminates the "slight" improvement of δ_{CP} resolution

Other Osc. Parameter Plots

Josiah Tusler I The Impact of the Solar Parameters within DUNE $(+ \rho)$

Sunset for Solar Parameters...

- Varying the solar parameters lead to/are:
 - Largely unaffected v_e detections
 - Most influential in the lower energy range
 - Largely inconsequential to neutrino oscillation parameters
 - No benefit in measuring solar parameters
 - Unaffected measurements of other oscillation
 parameters
- What does this mean for DUNE?
 - We can continue to use the world-accepted values of the solar parameters as we continue to prepare for DUNE's operation
 - Sunset the solar parameters

17

Extra Avenues of the Solar Parameters

There's a few things left to explore

Explore DUNE's Efficiency @ Lower Energies

- Create more bins between 0-1GeV
 - How does neutrino variation develop within the 0-1 GeV range?
- Improve DUNE efficiency

19

- If we were able to improve DUNE's efficiency in lower energy ranges, how would that affect v_e detections?
- Provide outlook on potential benefits of future upgrades on DUNE

Simulation Anomaly

- Simulation: final_np_15yr.root
 - (Directory: /pnfs/dune/persistent/ users/LBL_TDR/throws_v 4/)
- Explore "flares"
 - Compare these experiments with other parameters

Part 2 – Earth Matter Density ν_e Spectra

Josiah Tusler I The Impact of the Solar Parameters within DUNE $(+ \rho)$

21

7 Aug. 2023

Looking into Earth Matter Density, ρ and ν_e **Spectra**

- Last meeting, Baker showed relationship between δ_{CP} and ρ
 - Seeing the effects on v_e spectra was brought up
- With already developed CAFANA code, I repurposed the simulation to allow for varying ρ
 - Varied ρ and δ_{CP}
 - Found ratio of ρ & δ_{CP} "pairs"

ROCHESTER DU

Varying $\rho \& \delta_{CP}$

- Baseline parameter values:
 - $\rho = \rho_{nom} = 2.848 \, \text{g/cm}^3$
 - $\delta_{CP} = -0.25\pi$
- Varied ρ by percentage of nominal value
 - +10% $\rho = \rho_{nom} + 0.10(\rho_{nom})$
 - Varied *ρ* by +10%, +20%, +30%
 - $\delta_{CP} = -0.25\pi$ (fixed)
- Varied δ_{CP} until the first oscillation maximum peak matched with varying ρ spectra
 - $\rho = \rho_{nom}$ (fixed)

23

- δ_{CP} & ρ "pairings" (different δ_{CP} for FHC and RHC)

ROCHESTER DUNE

δ_{CP}/ρ Ratio Plots

- For each varied rho spectra, we plotted the δ_{CP}/ρ ratio for each bin
 - Plotted both FHC & RHC

24

 δ_{CP}/ρ Ratio vs. Neutrino Energy

FD_FHC_Nue_total

25 7 Aug. 2023 (+ **p**)

FD_FHC_Nue_total

Josiah Tusler I The Impact of the Solar Parameters within DUNE $(+ \rho)$

FD_FHC_Nue_total

Summary

- Solar parameters have little to no impact within DUNE
 - Potential Avenues:
 - Exploring the Lower energy Range of v_e detections with varying solar parameters
 - Potentially provide outlook on potential benefits of future upgrades on DUNE
 - Exploring the weird behavior with δ_{CP}
 - Compare these experiments with other parameters
- Spectra reaffirms the similarity of ρ 's and δ_{CP} 's effects on the first oscillation maximum for ν_e & $\bar{\nu}_e$ detections

ROCHESTER DU

Backup Slides

29

7 Aug. 2023 Josiah Tusler I The Impact of the Solar Parameters within DUNE $(+ \rho)$

v_e Detections Continued

FD_FHC_Nue_total

FD FHC Nue total

7 Aug. 2023

(+ **p**)

\overline{v}_e Detections Continued...

FD_RHC_Nue_total

FD_RHC_Nue_total

Josiah Tusler I The Impact of the Solar Parameters within DUNE $(+ \rho)$

ρ Variation values:

	per	Rho Values
-4.00%	-0.04	2.734
-2.00%	-0.02	2.791
-1.00%	-0.01	2.820
0.00%	0	2.848
1.00%	0.01	2.876
2.00%	0.02	2.905
4.00%	0.04	2.962
rho value		
2.848		
	per (by10%)	Rho Values
-50.00%	-0.5	1.424
-40.00%	-0.4	1.709
-30.00%	-0.3	1.994
-20.00%	-0.2	2.278
-10.00%	-0.1	2.563
0.00%	0	2.848
10.00%	0.1	3.133
20.00%	0.2	3.418
30.00%	0.3	3.702
40 00%	0.4	3,987
+0.0070	0.7	0.001

