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Abstract 

As modern high energy physics are producing more data at a faster rate, the need for high-
throughput, low latency is becoming primary concern in the development of new read-out 
architectures. The process of data compression/data selection is applied to across several stages of 
data pipeline. In recent years, we use machine learning (ML) algorithms increasingly for this use. 
The goal of this visiting faculty program (VFP) project is to provide an architecture that is 
specialized for a certain class of ML problems and can therefore deliver a higher level of 
throughput at a lower power consumption than previously possible. In this project, we selected 
graph neural networks (GNNs) for acceleration on open-source hardware platforms for optimizing 
fine-grain irregular data movement ranging from processing elements to the system level. 
Additionally, we propose a hardware-aware mapping strategy for OpenCL kernels on Vortex 
GPGPU processors. This method shows optimal hardware resource utilization to achieve better 
performance and flexibility compared to other mapping approaches. The experiments were 
validated on 32 different architectural GPU configurations with two typical Graph Convolutional 
Network layers.  

Introduction  

As transistor feature sizes have shrunk, physical issues such as crosstalk, wire-resistance, and delay 
variability are making it increasingly hard to design and optimize a system. To make up for 
increasing design time, we have no option but to throw more engineers at every project. This 
problem is evidenced in the “productivity gap” between the number of transistors per-chip that we 
can effectively manufacture and the transistors-per-designer-per-year that we can effectively 
design. System-level design techniques promise to improve productivity by designing at higher 
levels of abstraction. The basic system level design-flow involves describing the application at a 
high-level of abstraction, exploring the space of possible configurations with a performance-
analysis framework, and finally mapping the configuration to an application specific integrated 
circuit (ASIC) implementation.  

The most important aspect of describing a system at an abstract level is that it be fast to simulate. 
Simulation speed can be increased by separating the details of communication from the details of 
block description. Within the context of this abstraction, simulation speed can also be increased by 
abstracting the timing of a system in data flow-oriented language [1]. To date, there has been not 
much research on this topic in HEP communities and many differing opinions on the best ways to 
describe, explore, and map systems in this flow. Especially, as new read-out architectures need to 
process more data at a faster rate, the process of data compression/data selection is becoming 
primary concern. In recent years, we use machine learning (ML) algorithms increasingly for this 
use. The goal of most emerging read-out designs is to provide an architecture that is specialized 



for a certain class of ML problems and can therefore deliver a higher level of throughput at a lower 
power consumption than previously possible. 

The goals for this VFP project are to develop a framework to allow analysis of machine learning 
(ML) performance at the dataflow-level of abstraction, and to demonstrate this framework on ML 
hardware accelerators for high level trigger/detector electronics. To this end, we envision a 
framework that allows AI/ML description at a high-level and mapping to a synthesis flow, allows 
estimation of throughput, power and area while also permitting the use of very efficient hardware 
blocks. We envision also that designs must be sometimes carried to lower levels of abstraction in 
order to get more confidence in the accuracy of their statistics. 

Progress  

After meeting with Co-PI’s Fermilab team including Dr. Farhim and Dr. Guglielmo, we decided 
to develop a ML framework which maps the graph neural network (GNN) architecture on GPUs. 
GPUs and NPUs are on the rise of more and more application specific compute architectures, 
however it requires a close co-optimization between the hardware, the algorithms, the SW-HW 
mapping for a specific workload, causing several challenges. While large performance 
improvements are observed in such domain-specific architectures, they often suffer from a lack of 
versatility across different algorithmic kernels of the future. Moreover, flexible data-parallel 
compute platforms such as GPUs could be explored or optimized, yet these are typically closed 
source, hindering deep assessment or further optimizations. Our work demonstrates the impact of 
HW-aware mapping optimizations of AI workloads on this open-source Vortex GPU. To ensure 
algorithmic versatility, Graph Neural Network (GNN) are selected as the algorithmic target, as 
they consist of distinct aggregation and combination kernels. 

HARDWARE-AWARE RUNTIME WORKLOAD MAPPING: Vortex POCL compiler accepts 
standard OpenCL kernels. Compiled code is inserted in boiler-plate assembly, which takes care of 
initializing the platform and spatially and temporally mapping the parallel instances of the kernel. 
LLVM takes care to temporally unroll the execution with nested for loops, where the number of 
iterations of each loop is determined by the local work size (lws), one of the arguments passed by 
the host platform when calling the kernel execution [3]. Before the execution, the Vortex runtime 
library maps the compiled kernels across cores, warps, and threads. In the described flow, the 
spatial unrolling optimizes hardware utilization from cores to threads, in a top-down fashion, 
taking into account the temporal directives specified by the host. Depending on the relationship 
between the lws mapping parameter, the algorithmic workload size aws (e.g., the total iterations 
the kernel will be executed), and the hardware parallelism hp, resolved in Eq. 1, there are 3 possible 
scenarios: 1) lws < aws / hp: the software will spawn more warps than the hw can support. The 
execution will be scheduled at different timesteps 2) lws = aws / hp: all warps will be loaded in 
parallel into the hardware 3) lws > aws / hp: all warps will be loaded in parallel into the hardware, 
yet with reduced hardware utilization. The optimal lws value is both hardware and algorithm 
dependent, and can be determined as: lws = aws / hp , with hp = cores × warps × threads. This 
value can be evaluated at runtime based on the hardware properties and the workload size, without 
being explicitly specified by the programmer. Figure 1 shows more complex experiments 
conducted on the vector addition kernel, demonstrating the ability of our mapping strategy to 



minimize the execution latency. I hand-coded benchmark codes (vecadd, sgemm, gcn, gnn etc) 
with OpenCL embedding for Vortex. The Vortex is a risc-v based 4x4 GPGPU cores. Vortex POCL 
compiler take cares of unrolling, where the number of iterations of each loop is determined by 
local work load sizes. I worked on analytical mapping of this process by hand followed by Vortex 
simulations for optimal HW-aware mapping. For example, I can validate the mapping of sgemm 
benchmark for the hardware configuration: 2 cores, 8 warps, 16 threads as in Fig. 1.  

 

Fig. 1. Example optimal mapping for sgemm 

Future Work 

Based on the outcome, the scope of this project included GNN kernel mapping results on Vortex 
gpu, performance metrics with varying gpu configurations, and promising extended instructions 
for GNN acceleration. Here is the future work planned ahead to extend the work after returning to 
my home institution.  

First, Co-PI, Giuseppe suggested to use ESP platform with risc-v and set up as a loosely coupled 
accelerator (risc-v + custom ALUs on ESP for an ASIC/RTL implementation). I agreed with his 
open source approaches. I will study ESP platform and will start to transfer the candidate 
extensions on ESP. A small custom gpu like processors at L1 seems okay idea but I need to check 
with Farah and others. Presently, GNNs are accelerated using full size GPUs as more like cloud 
services. We agreed that GNN acceleration topic at edge device is seemly a good topic and not 
many work has been done yet. We had open discussions about Giuseppe’s active projects including 
eFPGAs. One of VFP goals is to have me understand what is going on in the lab. So I will keep 
this relationship going and we can work together for proposal submissions.  

Additionally, PI will develop a high performance and radiation hardened configurable fault tolerant 
processor platforms by mobile customized FPGA platforms. Project activities will provide exciting 



opportunities for educating undergraduate and graduate students, and particularly 
underrepresented minority students, in cutting edge hardware and software development.  

Impact on Laboratory or National Missions 

More specifically, this summer research project attempts to leverage graphic processors 
parallelism for graph neural network implementations. The proposed quantification mapping 
platform can be used for various neural network accelerators. Nationally, the research direction 
aligned with other laboratories such as Warfare Centers - Naval Sea Systems Command (NSWC) 
Crane Division’s mission and can also be used for high radiation environments including the NRL 
and Department of Energy sites such as Savannah River National Laboratory for remote 
monitoring.  

Conclusions 

In this work, we analyzed the resource-aware hardware mapping flow on open source GPU 
showing a method to runtime optimize the local workloads parameter and abstract its hardware 
impact to GPU programmer. We validated the approach on the diverse GCN layers, demonstrating 
the effectiveness of bringing both hardware and workload knowledge into the mapping process of 
the open source Vortex. 
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Appendix.  

A. Participants 

Name Institution role 
Dr. Youngsoo Kim Bradley 

University 
PI, ML processor for HEP design 

Dr. Farah Fahim Fermi lab Co-PI, HEP algorithm design 

Dr. Giuseppe Di 
Guglielmo 

Fermi lab HEP algorithm and arch. co-design, GNN detailed 
design 

Davide Braga Fermi lab Advising on HEP ASIC design, ASIC timing 
parameters derivations  

 

Scientific facilities 

The basic reconfigurable computing system is configured with Titanium Intel Tower PC Servers, 
each containing two 6-core Intel Xeon E5-2620 processors. Consequentially, there will be a total 
of 240 processor cores available to project participants. The field programmable gate array (FPGA) 
boards contain configurable processing elements that are loaded with hardware specifically 
designed for each application. Each FPGA has a maximum logic capacity significantly larger than 
10 million logic gate equivalents. 

Notable Outcome 

PI expects to extend this work and submit the extended manuscript in open source hardware 
workshop at the International Symposium on Computer Architecture (ISCA) 2024.  Additionally, 
he will work with NPS Space System Group and Dr. James H. Newman to develop a co-proposal 
with Fermi lab to lead in in prototyping, manufacturing, and modification of fault tolerant 
processors.  

  



Research Vibrancy 

This hardware mapping framework can be extended and the GNN accelerator can be designed on 
ESP platform with collaboration with Fermi lab ASIC division. This can be a good end-to-end 
execution of GNNs on a hardware-software combined architecture. PI will validate the approach 
on diverse GCN/GNN layers and demonstrate the effectiveness of the framework. PI will perform 
research engagement with Fermilab ASIC division. Currently, he is a recipient of DOE MSIPP 
funded AI Internet-of-things project, and he plans to develop a proposal out of this VFP project 
and submit it to Oak Ridge National Lab in relevant funding solicitation.    

Connection to Programs at Home Academic Institution  

The educational activities derived from this visiting faculty-ship will make aspects of completed 
computer architecture research more accessible to students; promote research initiatives among 
undergraduate and graduate students, and leverage interdisciplinary collaborations between 
Bradley University and Fermi lab. The education/outreach agenda is designed to foster an 
environment for developing a new generation of electrical engineers who will take a keen interest 
in hands-on hardware/ASIC design. The PI will provide research opportunities for undergraduate 
and graduate students at Bradley University.  

Specifically, PI will enrich undergraduate and graduate courses related to AI/ML computing and 
algorithms. He already updated the curriculum to enhance an introductory AI undergraduate course 
in microprocessor-based systems and embedded systems. He plans to update two graduate courses 
in AI/ML computing and AI architecture systems with a hands-on laboratory. More advanced 
courses have updated contents, emphasizing discussion of recent papers and graduate-level 
projects. 

 
Designing a hands-on laboratory: A critical component of AI/ML embedded system education 
program is to supplement lectures with hands-on laboratory sessions. A cloud-based virtual 
laboratory will provide a high degree of accessibility, flexibility, reusability, and scalability. Using 
graphical topology and statistical information about the embedded system, students will be aware 
of actual embedded system conditions when they do a lab exercise. We will provide students with 
an in-depth understanding of security problems through our labs through their experimentation. 

 
 
 

 


