Quantitative Evaluation Framework of Machine Learning Processors (MLP) for High Energy Physics

August 9 and 10 - 11AM Youngsoo Kim, Bradley University ykim@bradley.edu

Agenda

- Visiting Faculty Program Research Topics
 - Quantitative Evaluation Framework of Graph
 Neural Networks Using Open Source Platforms
 - Data type reduction/quantization for AI acceleration
 - eFPGA
- Background and motivation Trends for Neural Network Acceleration
- The Vortex Platform
- HW-aware Optimal Mapping
- Validation
- Conclusions and Future Work

Trends for Neural Network Acceleration

Click and drag to zoom in. Hold down shift key to pan.

[Ref: https://nicsefc.ee.tsinghua.edu.cn/network.html

Two complementary approaches: Microcontroller, ASIP

- Standardized solution
- Standard open-source RISC-V ISA
- Fully radiation tolerant
- SoC Ecosystem and IP blocks for the community
 - RadTol SoC IP clocks, interconnect

- Application Specific Instruction set
 Processor
- Tool base ASIP Designer by Synopsis
- Custom optimized ISA and microarchitecture

Open Source GPU

- GPU/ASIPs are alternative to application specific designs (ASIC or FPGA) in ML acceleration context
 - But need further specialization to improve efficiency
 - GPUs are complex architectures
 - Most GPU solutions are commercial, based on proprietary design, ISA, and SW stack
- But open-source, academic alternative was proposed in ASPLOS 2022
 - Vortex GPGPU from Georgia Tech.

Vortex GPU

• The Vortex GPU High-level architecture

RTL level implementation of GPU

- Based on the RISC-V ISA
- · Scalable in cores, warps and threads
- Uses open-source software stack
- Support for OpenCL

Why Vortex?

- Closed HW-SW loop + HW validation
- Open-source SW stack and customizable and extendable

RISC-V ISA extension for GPU control

wspawn - wavefront generation

split/join - control flow divergence/reconvergence

bar - wavefront barrier

[Ref: B. Tine, et al, "Implementing Hardware Extensions for Multicore RISC-V GPUs", CARRV (2022)]

OpenCL Compilation Flow

Workload distribution on Vortex 1) Spatial workloads distribution – workload is distributed e.g. vector add C = A + B for 16 elements, each thread will add two elements Runtime library 5 2 3 6 4 POCL inserted

code

Kernel

Program execution

warp0: t1 t2 **t3 t0**

Example: 1 core, 2 warps, 4 threads

t0

t1

t2

t3

:warp1

2) Temporal unrolling – Determines the elements executed by every spawned warp This depends on a runtime parameter passed by the host global kernel call (e.g. local work size)

Example – Execution changing local work load sizes for vecadd 16 elements

	lws	wspawn	tmask
	1	4	1111
	2	4	0011
$\left(\right)$	4	2	0001
	8	2	0001
	Under-utilization!		

Problem

- The lws parameter impacts the execution
- "Wrong" values lead to suboptimal HW utilization (slower exec, more instr. issues)
- How to determine optimal lws dynamically for different kernels?

Optimal HW-aware Mapping

- This problem can be formulated as an ILP problem. The value of cost function can be expressed by the following formula:
- minimize $\sum_i aws weights * (cores * warp * threads)$

Execution latency of sgemm across different local work load sizes

cycles

Our solutions

hw conf: 2 cores, 4 warps, 32 threads aws: 32, 128, 256 ...

Validation methodology

- Generate/develop 8-32 different
 Vortex architecture configurations
- Evaluate our mapping on GNN/GCN layers
 - hidden feature size
 - single aggregation, or full layer
- Compare execution time and latency results with different mapping
 - Energy Delay Product (EDP) if possible

Execution latency for GCN with different mappings

Validation methodology

• GCN/GNN benchmarks from an MIT benchmarking tool in C++. They implement kernel calls in plain C++, vector extensions and CUDA

- My contribution mainly ported the calls in **OpenCL**
- The repo does not include formatted datasets (for space reasons), I had to generate them

Conclusions

- ML acceleration research optimizes architectures for specific models
- A different approach is bridging the gap between open-source GPUs and ASIC, and ASIP
- Investigated limitations of the Vortex GPGPU platform
- Proposed an optimal, HW-aware mapping (dynamic at runtime) that ensures an efficient execution, minimizing cycle latency
- Validated on several configurations of GCN layers

Future Work

- There is no characterizing effort of GCN/GNNs on GPUs
- Write a workloads characterization paper
- Extend this work to the ESP platform with risc-v and set up as a loosely coupled accelerator
 - risc-v + custom ALUs on ESP for an ASIC/RTL implementation
- PI will develop a funding proposal for high performance and radiation hardened configurable fault tolerant processor platforms by mobile customized FPGA platforms
 - Naval Sea Systems Command (NSWC) Crane Division