
1

Quantitative Evaluation Framework of Machine 
Learning Processors (MLP) for High Energy 

Physics

August 9 and 10 - 11AM

Youngsoo Kim, Bradley University

ykim@bradley.edu



2

Agenda

• Visiting Faculty Program Research Topics

– Quantitative Evaluation Framework of Graph
Neural Networks Using Open Source Platforms

– Data type reduction/quantization for AI acceleration

– eFPGA

• Background and motivation - Trends for Neural Network Acceleration

• The Vortex Platform

• HW-aware Optimal Mapping

• Validation 

• Conclusions and Future Work



3

Trends for Neural Network Acceleration

[Ref: https://nicsefc.ee.tsinghua.edu.cn/network.html]

Academia pushing towards 
ASIC/FPGA for publishing
• Different accelerator for different 
algorithms
Question:
Is this future proof, customizable ?

GPU



4

Two complementary approaches: Microcontroller, ASIP 

RISC-V based

Control & 
monitoring

ASIP based

Data 
processing

• Standardized solution
• Standard open-source RISC-V ISA
• Fully radiation tolerant
• SoC Ecosystem and IP blocks for the 

community
• RadTol SoC IP clocks, interconnect

• Application Specific Instruction set 
Processor

• Tool base - ASIP Designer by Synopsis
• Custom optimized ISA and 

microarchitecture



5

• GPU/ASIPs are alternative to application specific designs (ASIC or FPGA) 
in ML acceleration context

– But need further specialization to improve efficiency

– GPUs are complex architectures

– Most GPU solutions are commercial, based on proprietary design, ISA, 
and SW stack

• But open-source, academic alternative was proposed in ASPLOS 2022

– Vortex GPGPU from Georgia Tech. 

Open Source GPU 



6

• The Vortex GPU High-level architecture

Vortex GPU

RTL level implementation of GPU
• Based on the RISC-V ISA
• Scalable in cores, warps and threads
• Uses open-source software stack
• Support for OpenCL 

Why Vortex?
• Closed HW-SW loop + HW validation
• Open-source SW stack and customizable 

and extendable 

RISC-V ISA extension for GPU control 
wspawn – wavefront generation
split/join – control flow divergence/reconvergence
bar – wavefront barrier 

[Ref: B. Tine, et al, "Implementing Hardware Extensions for 
Multicore RISC-V GPUs", CARRV (2022)]



7

OpenCL Compilation Flow

OpenCL 

Kernel

Vortex 

Intrincs

Vortex 

Runtime

Kernel 

LLVM IR

Static 

Library

Program 

Binary

POCL transforms the
kernel according to
OpenCL HW-SW
standard

Inputs to
compiler: Hand-
code vecadd,
sgemm, gcn, etc.



8

Workload distribution on Vortex

Runtime 
library

POCL 
inserted 

code

Kernel

Program execution

1) Spatial workloads distribution – workload is 
distributed e.g. vector add C = A + B for 16 
elements, each thread will add two elements

2) Temporal unrolling – Determines the 
elements executed by every spawned warp 
This depends on a runtime parameter passed 
by the host global kernel call (e.g. local work 
size)

9876543210

t3t2t1t0 t3t2t1t0warp0: :warp1

Example: 1 core, 2 warps, 4 threads



9

tmaskwspawnlws

111141

001142

000124

000128

Example – Execution changing local 
work load sizes for vecadd 16 elements

Under-utilization!

Problem

• The lws parameter impacts the 
execution

• “Wrong” values lead to 
suboptimal HW utilization (slower 
exec, more instr. issues)

• How to determine optimal lws
dynamically for different kernels?



10

•

Optimal HW-aware Mapping

SW

HW



11

Execution latency of sgemm across 
different local work load sizes 

1

10

100

1000

10000

100000

1000000

0 5 10 15 20

cycles

1

10

100

1000

10000

100000

1000000

10000000

100000000

0 10 20 30 40 50 60 70

cycles

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

0 10 20 30 40 50 60 70

cycles

Our solutions

hw conf:
2 cores, 4 warps, 32 threads
aws: 32, 128, 256 …



12

• Generate/develop 8-32 different 
Vortex architecture configurations

• Evaluate our mapping on GNN/GCN 
layers

– hidden feature size

– single aggregation, or full layer

• Compare execution time and latency 
results with different mapping

– Energy Delay Product (EDP) if 
possible

Validation methodology

Execution latency for GCN with 
different mappings



13

• GCN/GNN benchmarks from
an MIT benchmarking tool in
C++. They implement kernel
calls in plain C++, vector
extensions and CUDA

• My contribution mainly ported
the calls in OpenCL

• The repo does not include
formatted datasets (for space
reasons), I had to generate
them

Validation methodology



14

• ML acceleration research optimizes architectures for specific models 

• A different approach is bridging the gap between open-source GPUs and 
ASIC, and ASIP 

• Investigated limitations of the Vortex GPGPU platform 

• Proposed an optimal, HW-aware mapping (dynamic at runtime) that ensures 
an efficient execution, minimizing cycle latency 

• Validated on several configurations of GCN layers

Conclusions



15

• There is no characterizing effort of GCN/GNNs on GPUs

– Write a workloads characterization paper

• Extend this work to the ESP platform with risc-v and set up as a loosely
coupled accelerator

– risc-v + custom ALUs on ESP for an ASIC/RTL implementation

• PI will develop a funding proposal for high performance and radiation
hardened configurable fault tolerant processor platforms by mobile
customized FPGA platforms

– Naval Sea Systems Command (NSWC) Crane Division

Future Work


