

Project X Collaboration meeting, November 27-28, 2012 FNAL

HWR Cryomodule Development

<u>P.N. Ostroumov</u>, Z.A. Conway, M.P. Kelly Physics Division

November 28, 2012

Content

- SRF technology at ANL
- Status of current and future work on HWR cryomodule
- HWR development and fabrication
- RF coupler
- BPM

meeting

- SC solenoid
- Cryomodule vacuum vessel
 - Mechanical design
 - Engineering analysis
- Near future work

SRF Technology for PXIE HWR

- Recent progress at ANL with 72 MHz QWRs and cryomodule
- 2K testing: at 80 mT, V_0 =3.6 MV, residual resistance is just ~2 n Ω
- Very low X-ray radiation below 80-100 mT
- Several cavities exceed the best ILC cavity performance in E_{PEAK}
- State-of-the-art design and fabrication technology is demonstrated

Gaining Experience with ATLAS Cryomodule Assembly

- Clean-room assembly of all components
- Fitting of vacuum, helium manifolds
- Alignment of cavities and solenoids - ±0.25 mm is achievable
- Alignment of the strongback shrinkage is as expected in all directions
- Engineering cold test of the cryostat at LN temperature
- Measurements of heat load to LN - 160 W

meeting

November 28, 2012

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

Activities Since April-12 Collaboration Meeting

- Mechanical design and engineering analysis of the HWRs are complete
- Pressure vessel safety analysis passed joint ANL-FNAL safety review and safety analysis documentation are complete
- Niobium parts for 2 HWRs are being fabricated
 - One cavity is being built with Wah Chang Nb, another one with CABOT Nb
 - Fixturing for wire EDM and EBW is being fabricated
- SC solenoid includes return coil and 4 dipole coils
 - Prototype solenoid has been built at Cryomagnetics and jacketed at Meyer Tool
 - Will have ASME pressure vessel stamp
- High-power, 10-kW, RF coupler
 - Ready for cold testing in January-February 2013
- Beam Position Monitor

meeting

- All components are finished, being welded and will be ready for cold testing in January-February 2013
- Cryomodule design is nearly complete
 - Vacuum vessel safety review is expected in March 2013

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

PXIE HWR - df/dP and Safety Analysis

Nb Cavity Stress Red > 5.5 ksi

- Half-wave resonator design used for safety analysis passed.
- Results shown here reflect the properties of the prototype resonator being fabricated.
- Results are excellent for RF amplitude/phase stabilization and will be confirmed with the prototype. P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development" **Project X Collaboration**

- 310 kHz tuning range with 2,250 lb (10 kN) applied slow tuner with current models
- Figures shown use room temperature (RT) properties of cavity. At R.T. cannot use full slow-tuner stroke.

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

meeting

PXIE HWR - Fabrication Status Overview

- Major cavity parts status:
 - Reentrant nose and doubler plates received.
 - Toroids To be delivered first week of December.
 - Center conductors @ ANL.
 - Outer conductors waiting on Al for forming die to arrive.
- Two sets of parts are being formed to make two prototypes.
 - One from ATI Wah Chang material.
 - One from Cabot Supermetals material.
 - Some Nb rod from Tokyo Denkai is being used.

Fixturing for Wire EDM and EBW is Being Built

EDM trimming of the CC

EDM trim of the OC-halves length

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

meeting

Trimming of the CC length

HWR Prototype - Reentrant Nose Assemblies STEP 2: Etched & Assembled in Clean Room

STEP 1: Cleaned & Inspected

STEP 3: Electron Beam Welding

STEP 4: Cleaned & Inspected Again

November 28, 2012

HWR Prototype - Toroids

meeting

_Toroid, inner conductor trimmed.

Branch pull hardware.

Finished toroids. Two more to go. @ANL on Nov. 29.

HWR Prototype - Center Conductors

Center Conductor Pre-Forming

Center Conductor Post-Forming

Center Conductors Arrived at ANL on Tuesday, Nov. 27.

meeting

Center Conductors Ready For EDM

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

RF Coupler ANSYS Mechanical and EM Model

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

meeting

RF Coupler

meeting

- A 15 kW RF-coupler appropriate 162 MHz cavities has been modeled
 - Reflections are low ~-30 dB
 - No significant heating in bellows, ceramic, or center conductor
 - Heat flow to the liquid helium is calculated <100 mW
 - Any coupler multipacting could be mitigated by center conductor bias

ANSYS Temperature Map: 15 kW full reflection (overcoupled)

Software	ANSYS		CST	
Frequency, MHz	162.5			
Input power, kW	15			
Total heat flow to 2K, W	0.078		0.165	
Total heat flow to 5K, W	2.34		2.49	
Total heat flow to 60K, W	11.2		11.8	

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

Prototyping of the RF coupler

- A fabrication issue with adhesion of the 2" ceramic window has been resolved (controlled & slow furnace cool down to reduce stresses)
- Bellows plating completed in July 2012
- High power testing in January 2012 when cavity/rf amplifier are available

MYAT 2" to 1-5/8" adapter

meeting

20 microns of copper plating on a 150 micron thick stainless steel bellows

Cold window assembly

Cold window plus bellows assembly

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

SC Solenoid for PXIE HWR Cryomodule:

Magnet Specifications

Wire	Niobium-Titanium
Operating temperature	1.8-4.6 K
Magnetic field integral	∫Bzdz = 0.75 T-m
Operating current	82 A
Inductance	1.1 H
Shielding	B<100 G: z >= 15 cm
Steering coils	0.2 T, 30 T-mm
Bore diameter	35 mm

PON. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

meeting

Cryomagnetics 0.75 T-m SC solenoid

- Bare magnetic 'dunk test' in 4 K dewar at Cryomagnetics, Inc. in October 2012
- Main coil current tested up to 87.25 A (5 A above nominal)
- X,Y steering coil current tested up to 40 A
- All three coils successfully re-charged after an induced quench

PTN. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

meeting

Code-stamped Liquid Helium Jacket at Meyer Tool, November 2012

meeting

Cryomodule - Conductively Cooled Leads

- High-temperature conduction cooled leads have been ordered from HTS-110.
- The first pair to be delivered in January 2013 for testing.

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

meeting

Cryomodule BPM Fabrication Status

- BPM part machining is complete. Parts to be delivered to ANL between Nov 27-29.
- Next steps:

meeting

- Clean & Inspect.
- Send BPM body and SMA feedthroughs out for laser welding.
- Electron beam weld the electrodes to SMA feedthrough center conductors.
- Offline testing.
- Online testing.
 P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

PXIE HWR Cryomodule

- Cryomodule status update.
 - Design status.

meeting

- BPM parts made need to weld.
- Conduction Cooled Leads On order

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

- Half-Wave Resonator.
 - Due to time constraints discussing cavity RF design only.
 - df/dP.
 - Slow tuning.
 - Project X Collaboration

PXIE Cryogenic Loads

- Dynamic Load: 6 n Ω cavity residual resistance.
- Other loads, e.g., radiative heating, come from Functional Requirements Specifications.

Parameter	Components	+20%	Design	-20%
Operating Set Point (MV)	Cavities # 1 & # 2	1.2	1.0	0.8
	Cavities # 3 - # 8	2.0	1.7	1.4
2 K Dynamic Heat Load (W)	Cavities # 1 & # 2	1.5	1.1	0.7
	Cavities # 3 - # 8	12.5	8.7	5.7
Total 2 K Load	Everything	29	24	21

Changing Operating Voltage

Estimates vs. Functional Requirements

Load	Total	FNAL FRS		Total ENALERS		Constraint	FRS Convention
Loud	iotai			70 -2 K Radiation	0.1 W/m ²		
2 K	24 W	25 W		70 – 5 K Radiation	0.1 W/m ²		
5 K	60 W	80 W		293 – 70 K Radiation	1.5 W/m ²		
70 K	250 W	250 W			2.0 11/11		

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

meeting

Strongback Hanger Thermal Analysis

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

neeting

Cryomodule Safety Analysis

Limit Load Results •Top left, summed deflection. •Bottom left, solver output. Results •Converged.

Deflection Plots for 1 atm. •Contours = blue <.11", .11"<green<.19", red > .25" Results •Maximum wall deflection = .248" Passes buckling and ratcheting analyses too. No show stoppers but still need to evaluate final design

meeting

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

Future Work

- The goal is to complete 2 HWRs by 4QFY13 and provide cold testing by the end of Q1FY2014
- Cold testing of the RF coupler up to 10 kW, SC solenoid and BPM in January-February 2013
- Due to funding constrains in FY13 we can not proceed with
 - Fabrication of Nb parts for production cavities, 7 HWRs
 - This work can be started immediately if funding is available
 - Procurement and fabrication of the cryostat vacuum vessel and other components of the cryomodule (strongback, magnetic and thermal shield, JT exchanger, gate valves, vacuum, helium manifolds,...)
 - This work can be started in April 2013
 - Purchase and fabrication of all SC solenoids, RF couplers, BPMs
 - This work can be started immediately if funding is available

meeting

PXIE Solenoid and Coupler 4 Kelvin Cold Testing January 2013

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development" meeting

- Planned testing with existing 72 MHz cavity and cryostat
- Coupler testing at 162 MHz at 10 kW in full reflection
 - 4 K at cavity flange
 - 80 K at cold window
 - Thermometry and calibration heaters at 4 K and 80 K
- Solenoid testing with main coil to 80 Amps

Project X Collaboration

 Lake Shore magnetic field probes to measure stray field and magnetization

Milestones

#	Milestone	Date
1	Place contract for niobium dies and forming of the prototype cavity	Q2FY12
2	Conceptual and Preliminary Design complete Niobium for production cavities is delivered and inspected	Q4FY12
3	Complete fabrication of prototypes of (a) 10-kW RF coupler; (b) SC solenoid; (c) BPM	Q1FY13
4	Complete fabrication drawings of the cryostat vessel including thermal and magnetic shields. Design review of the cryomodule. Cold testing of the RF coupler, SC solenoid and BPM.	Q2FY13
5	Fabrication of two prototype cavities complete	Q4FY13
6	Two prototype cavities tested. Start procurement of production cavities, its sub-systems and cryostat vessel if funding is available.	Q1FY14
7	Fabrication of the cryostat vessel complete	Q1FY15
8	Fabrication of production cavities and its syb-systems complete	Q2FY15
9	RF surface processing of HWRs. Cold testing of 50% of HWRs. Engineering cold testing of the cryostat vessel.	Q4FY15
10	Mock-up cavity string assembly	Q2FY16
11	Cryomodule off-line testing complete	Q4FY16
12	Cryomodule installed at PXIE beamline	Q2FY17

Backup Slides

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

meeting

CST Simulations: Multipacting Suppression using a DC bias voltage

The sapphire disk width should be 0.01 - 0.015" to make very small, S11 ~ -30 dB

meeting

Prototyping Critical Components: Cold RF Window

PXIE HWR Cryomodule

P.N. Ostroumov, Z.A. Conway and M.P. Kelly "HWR Cryomodule Development"

meeting

Project X Collaboration

November 28, 2012

PXIE Cryomodule 5 K Load

