

Progress on bringing High Performance Computing to MAP D&S

Robert Ryne LBNL Nov 2, 2012

Bringing High Performance Computing (HPC) to MAP D&S

- Incorporating HPC is an integral part of our D&S plans.
- Enables:
 - inclusion of more realistic physics models
 - running jobs with higher resolution
 - running jobs with higher statistics
 - running medium-scale jobs faster
 - scanning problem parameters (e.g. lattice parameters)
 - faster turn-around for human-driven optimization
 - computer-driven design optimization

Brute force computer power is not a replacement for being innovative. Goal is to use powerful computational tools AND be innovative in order to explore concepts and ultimately develop the best designs for MAP.

- About NERSC*:
 - the primary computing facility for the DOE Office of Science
 - provides HPC/information/data/communications services for research sponsored by DOE Office of Science
 - Largest system is Hopper, a Cray XE6 with 153,000 compute cores
- A new repository (called "map") has been set up at NERSC
- A new project directory (/project/projectdirs/map/) enables sharing of data and codes, and a place to work in addition to \$HOME and /scratch/
- We are now using Hopper (hopper.nersc.gov) to perform MAP simulations

*http://www.nersc.gov/

First, email me:

• your name, institution, phone, preferred userid, citizenship

Next, go to

• <u>http://www.nersc.gov/users/accounts/user-accounts/nersc-computer-use-policies-form/</u>

Read and sign the form, then upload (preferred) or email or fax the form to NERSC

Accounts are usually set up within 24 hrs

web pages, getting help: NERSC has excellent web pages: <u>http://www.nersc.gov</u> If you need to speak to a consultant, dial 1-800-66NERSC

To login: ssh -Y hopper.nersc.gov -1 youruserid <enter your password>

To move files from a remote computer (such as your laptop or personal computer) using a Terminal window:

scp filename your_user_id@hopper.nersc.gov:.
<enter your password>

To compile: The fortran compiler is invoked via "ftn" and the C compiler is invoked using "cc" See "Compiling Code" at www.nersc.gov/users/getting-started/ The default fortran compiler is PGI

Modules:

For detailed info see "Modules" in the middle of the page at http://www.nersc.gov/users/getting-started/

Here are the basics:

To see what is loaded, type module list

```
To see what is available, type module avail
```

NERSC "getting-s	tarted" notes
<pre>Submitting batch jobs: qsub your_batch_script_file_name</pre>	
Following the qsub command, you will see the jobid that is assigned to it	
Monitoring jobs:	Sample batch script:
qs -u your_user_id	<pre>#PBS -q debug #PBS -A map #PBS -1 mppwidth=512 #PBS -1 walltime=00:30:00 cd \$PBS_O_WORKDIR aprun -n 512 ./icool.x</pre>
To kill an already submitted job: qdel your_job_id	

Interactive jobs:

www.nersc.gov/users/computational-systems/hopper/running-jobs/interactive-jobs/

MAP project directory

- /project/projectdirs/map/
- map/

Archives/ Baseline/ Benchmarks/ Codes/ Geant4Data Users/

- Baseline/ ProtonDriver/ FrontEnd/ Cooling/ AccStorage/ Collider/
- Codes/

icool330/ icool331a icool_warp/ ScanParams/ Warp_input/ ...

Users/

diktys/ hsayed/ ryne/ tjrob/ ...

- Serial version of ICOOL 3.31 installed
- Parallel version of G4BL installed
 - major performance improvements achieved (see Tom Roberts talk)
- Developed scripts to perform parallel parameter scans
- Archived previous NF and MC designs
- Extracted ICOOL beam-material interaction (BMI) routines
- Incorporated BMI routines in Warp
- ICOOL Front-End simulations underway
- Warp cooling simulations w/ space charge underway

Simulation of 6D cooling with space charge (D. Stratakis, D. Grote)

Initial studies look at Stage 7, use Warp to examine effects of space charge 10

0.2

0.4

length (m)

-0.2

0.0

-20

0.6

Muon Cooling with Space-Charge (1)

- Very little extra work beyond what you would do anyway to run a single job
 - 1. prepare your input files as usual
 - 2. prepare 1 new (small) input file describing what parameters are to be varied
 - 3a. make minor edits to a batch script (example provided) to run multiple serial jobs
 - or
 - 3b. make minor edits to a unix script (example provided) to run multiple parallel jobs

- 1. Login to Hopper
- 2. Prepare your input files as usual
- 3. Create a new file called "scanparams.in" describing parameters to be scanned, plus names of any other input files
- 4. Create a PBS batch script. Here it is called scanscript
 - edit scanscript to set walltime, queue, exec code
- 5. Submit scanscript

Results will appear in separate subdirectories. A list of the parameters used for each case will be found in a file called "scanparams.out"

Note: To copy a sample version of scanscript : cp /project/projectdirs/map/Codes/Scanparams/scanscript .

Parameter scans with a parallel executable

- 1. Login to Hopper
- 2. Prepare your input files as usual

Only difference compared to the serial case is that you (1) edit a unix script instead of a PBS batch script, and (2) also specify the # of cores per parallel executable

- 3. Create a new file called "scanparams.in" describing parameters to be scanned, plus names of any other input files
- 4. Create a unix script. Here it is called pscanparams
 - edit pscanparams to set walltime, queue, exec code, cores/exec
- 5. Run pscanparams
 - this will create a batch script and submit it for you

Results will appear in separate subdirectories. A list of the parameters used for each case will befound in a file called "scanparams.out"

Note: To copy a sample version of pscanparams : cp /project/projectdirs/map/Codes/Scanparams/pscanparams .

Example with a serial exectuable:

scanning two quantities in an ICOOL run

- Login to Hopper: ssh -Y hopper.nersc.gov -l your_user_name
- Prepare your input files as usual
- Create a new file called "scanparams.in" describing parameters to be scanned, plus names of any other input files*

*note: to specify a file for which no parameters are varied, just list the name followed by /
 ptcls.in /

• Edit PBS batch script, called scanscript, to set execution time, queue, and location of serial executable

• Submit batch script: qsub scanscript

Example with a serial exectuable: scanning the seed in an ICOOL run

• File "scanparams.in" could look like this:

for001.dat integer -1 -10000 480 's/rnseed=-1/rnseed=#########/'

 Note: In general, besides scanning using real and integer you can also specify octal

Example with a parallel exectuable: scanning two quantities in an MLI run

• Same as for the serial case, you create a file "scanparams.in"

• Instead of editing the PBS script called scanscript, you edit the beginning and end of a unix script called pscanparams

• Launch the job (i.e. run the unix script) by typing: ./pscanparams