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Introduction - MAPS for Linear Higgs factory ECal
❖ Higgs factory detectors need unprecedented precision. 
❖ Ambitious physics goals demand challenging detector requirements on tracking 

and calorimetry. 
❖ High precision and low mass trackers, 
❖ Highly granular calorimeters.

❖ Monolithic Active Pixel Sensor (MAPS) technology offers needed advances.
❖ Sensors and readout circuitry are combined in pixels,

❖ Fabricated with commercial CMOS processes. 
❖ Currently MAPS widely used in HEP, astronomy and photonics,

❖ Inner Tracking System Upgrade (ITS2) of ALICE at LHC.
2
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Potential Attributes - MAPS for Linear Higgs factory

❖ Small pixel (down to ~ 10 μm) → High Granularity
❖ Small sensor capacitance (few fF )→ better performance for lower power 

consumption than hybrid detectors
❖ Low material budget → The wafer can be thinned (<100 μm)
❖ Fast production → no bump bonding necessary
❖ Relatively cheap solution, using commercial CMOS imaging technologies
❖ Possibility of large stitched sensor → up to 30 cm x 10 cm
❖ Timing to < ns-rms (with <115 mW/cm2 × DutyFactor; DutyFactor<1% for LC)

3Noise ⇩      Power ⇩     Cost  ⇩    
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Main specifications for Large Area MAPS development
Parameter Value Notes
Min Threshold 140 e- 0.25*MIP with 10 µm thick epi layer

Spatial resolution 7 µm In bend plane, based on SiD tracker 
specs

Pixel size 25 x 100 µm2 Optimized for tracking
Chip size 10 x 10 cm2 Requires stitching on 4 sides

Chip thickness 300 µm <200 µm for tracker. Could be 300 µm for 
EMCal to improve yield.

Timing resolution 
(pixel) ~ ns Bunch spacing: C^3 strictest with   5.3-

>3.5 ns; ILC is 554 ns
Total Ionizing 
Dose 100 kRads Total lifetime dose, not a concern

Hit density / train 1000 hits / cm2

Hits spatial 
distribution Clusters Due to jets 

Balcony size 1 mm Only on one side, where wire-bonding 
pads will be located.

Power density 20 mW / cm2 Based on SiD tracker power 
consumption: 400W over 67m2 SiD Tracker and the ECal

MAPS

L. Rota

25 x 100 µm2 
ECal performance  

same as  
50 x 50 µm2
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EMCal HCal
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Longitudinal structure of SiD ECal
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   Total = 27 XO

Incident Particle   HCAL 
Minimize sampling 
gap to achieve 
optimal Moliere 
radius and shower 
separation

20 layers of 2.243 mm W 
+ 1 mm sampling gap

10 layers of 4.486 mm W 
+ 1 mm sampling gap

   20 GeV γ average profile



Power during integration phase
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 Readout  Integration  ReadoutAcquisitionPhase:  

• Avg power reduced by power-cycling  … but peak current draw is not!   current draw ~16 A 
•  significant voltage drop 

Possible strategies: 
• Bypass caps; EMCal flat cable distributes power; Re-distribution layer; more/thicker metal layers. 

Need to investigate strategies on how to cope with shorts: L. Rota

Power during readout phase
Asynchronous readout logic with zero-suppression: 

• Only pixels with HIT information read out.  power ⇩ 
• Remove clock  power ⇩ 

 Readout
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Gap Structure with MAPS

ONE CABLE IN GAP DESIGN 

Gap structure with MAPs on one cable 
(or pcb).  Requires bump bonding

8M. Breidenbach
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Multi-shower of SiD MAPS compared to SiD TDR 
40 GeV π0 → two 20 GeV γ’s

 SiD TDR {arXiv:1306.6329 [physics.ins-det]}                         New SiD fine MAPS pixel sensors
           hexagonal sensors - 13 mm2 pixels                                               25 μm x 100 μm pixels

9
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40 GeV π0 → two 20 GeV γ’s
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Y (25 um) Z (100 um)

Radius Symmetry plane

Vertical bin

400 um
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Resolution vs. Energy (hits and mips)
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3 %

Resolution vs. Energy 
(hits    and     mips)  

Hits are active pixels 
& Mips count each 
charged particle in 
sampling gap just 
once (truth).

Resolution can be 
improved!

9.8 % / E ⊕ 1.1 %

16.4 % / E ⊕ 2.0 %

TDR = 
arXiv:1306.6329 [physics.ins-det]
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Mips per cluster
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20 GeV γ

1 mip2 mips

3 mips 0 mips

Mip = 1 or 0 dominate;
many clusters contain 
more than 1 unique mip

Cluster definition:  
Collection of hits in contact
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Cluster summary (20 GeV γ)
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Yellow - hit w/o mip 
Others - 1 or more mips

20 GeV γ20 GeV γ

Cluster count is closer to mip count, reducing fluctuations from multiple hits.

Cluster definition:  
Collection of hits in contact
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Resolution vs. Energy (hits/clusters/mips)
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3 %

Resolution vs. Energy 
(hits    and     mips)  

9.8 % / E ⊕ 1.1 %

16.4 % / E ⊕ 2.0 %

TDR = 
arXiv:1306.6329 [physics.ins-det]
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Resolution vs. Energy (hits/clusters/mips)
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3 %

Resolution vs. Energy 
(hits/clusters/mips)               
    

Simple cluster 
performance is better 
than hit counting.

9.8 % / E ⊕ 1.1 %

16.4 % / E ⊕ 2.0 %
13.7 % / E ⊕ 2.0 %

TDR = 
arXiv:1306.6329 [physics.ins-det]
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Resolution vs. Energy (hits/clusters/mips)
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3 %

Resolution vs. Energy 
(hits/clusters/mips)   &  
weighted clusters.

Simple cluster 
performance is better 
than hit counting.

When cluster properties 
are taken into account 
with weighting, 
performance improves.

9.8 % / E ⊕ 1.1 %

16.4 % / E ⊕ 2.0 %
13.7 % / E ⊕ 2.0 %
12.2 % / E ⊕ 1.4 %

TDR = 
arXiv:1306.6329 [physics.ins-det]
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NAPA_p1: NAnosecond Pixel for large Area sensors – Prototype 1
❖ Design in Tower Semiconductor 65 nm imaging technology, 

capitalizing on the CERN WP1.2 efforts over a decade of sensor 
optimization.

❖ The prototype design submitted with a total area 5 mm x 5 mm and a 
pixel of 25 μm × 25 μm, to serve as a baseline for sensor and pixel 
performance.

❖ Charge Sensitive Amplifier (CSA) with a synchronous reset, which can 
be powered down during inactive time

❖ A comparator with auto-zero technique, removing the need for per-
pixel threshold calibration 17

Layout of MAPS SLAC prototype for
WP1.2 shared submission

Key pixel elements
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Summary
❖ MAPS has great a potential for the Higgs factory linear collider requirements 

❖ for ECal, as well as vertex detector and tracking.
❖ Simulation studies of the ECal performance demonstrates better than ILC TDR 

specs, achieving

❖ High granularity and timing adds to the performance.
❖ Low sensor capacitance of 2-3 fF in Tower Semiconductor 65nm technology, 

improving power efficiency by at least 2 order of magnitude with respect to 
hybrid detectors.

❖ Simulations of NAPA_p1 show that it is possible to achieve a time resolution         
~ 1 ns-rms with reasonably low power consumption of 115 mW/cm2 × 
DutyCycle, where DutyCycle for linear colliders < 1%

❖ NAPA-p1 characterization is underway. Results should be available soon.
❖ Support needed to continue this promising development effort. 18

12.2 % / E ⊕ 1.4 %


