Study of Neutrino-Antineutrino Transitions in MINOS

Richa Sharma, for the MINOS Collaboration

Panjab University, Chandigarh India-Fermilab Neutrino Collaboration

Advisor: Dr. Vipin Bhatnagar, Panjab University, Chandigarh Co-advisor: Prof. Brajesh C Choudhary, University of Delhi, Delhi

Working closely with: Dr. Robert K Plunkett, Fermilab

Introduction \bigcirc

- Discussion of the Model \bigcirc
- Overview of the MINOS Experiment \bigcirc
- Analysis Procedure \odot
- Preliminary Results and Future Plans \bigcirc

Introduction

- Lorentz and CPT symmetry are inherent in Standard Model and \bigcirc General Theory of Relativity.
- Tiny violations of Lorentz and CPT symmetry might be observable \bigcirc in experiments and can lead to interesting phenomena.
- Lorentz and CPT violating couplings in the Standard Model \bigcirc Extension (SME) can describe neutrino-antineutrino oscillations.*

$$
\begin{pmatrix} \mathbf{V}_{\mathbf{H}} & \longrightarrow & \nabla_{\mathbf{H}} \end{pmatrix}
$$

The aim of the present work is to study the probability of oscillation of muon neutrinos to muon antineutrinos and to find the sensitivity of MINOS to such oscillations.

 *Sebastian Hollenberg, Octavian Micu, and Heinrich Päs, PhysRevD.80.053010 (2009) *V. Alan Kostelecky and Matthew Mewes, PhysRevD.69, 016005 (2004)

Considering two neutrino generations, the Schrodinger equation reads:

$$
i\frac{d}{dt}\begin{pmatrix}v_{\mu} \\ v_{\tau} \\ \bar{v}_{\mu} \\ \bar{v}_{\tau}\end{pmatrix} = h_{eff}\begin{pmatrix}v_{\mu} \\ v_{\tau} \\ \bar{v}_{\mu} \\ \bar{v}_{\tau}\end{pmatrix}
$$

If we assume Lorentz and CPT violation, and consider a set of four coefficients b_{μ} , b_{τ} , $c_{\mu\mu}$, $c_{\tau\tau}$ which govern it, we can get neutrinoantineutrino oscillations, and as well as altered dispersion relations in the standard $v_{\mu} \rightarrow v_{\tau}$ and $v_{\mu} \rightarrow v_{\tau}$ sectors.

$$
h_{\text{eff}} = \text{diag}\left(E + \frac{\sum m^2}{4E}\right) + \frac{\Delta m^2}{4E}\sin 2\theta - \frac{\Delta m^2}{4E}\cos 2\theta - \frac{C_{\mu\nu}}{2E}\right) = 0
$$
\n
$$
h_{\text{eff}} = \text{diag}\left(E + \frac{\sum m^2}{4E}\right) + \frac{\Delta m^2}{4E}\sin 2\theta - \frac{\Delta m^2}{4E}\cos 2\theta - \frac{C_{\pi}}{2E}\right) = 0
$$
\n
$$
\frac{\Delta m^2}{4E}\cos 2\theta - \frac{C_{\mu\nu}}{2E}\cos 2\theta - \frac{C_{\mu\nu}}{2E}\cos 2\theta - \frac{C_{\mu\nu}}{2E}\sin 2\theta - \frac{\Delta m^2}{4E}\cos 2\theta - \frac{C_{\mu\nu}}{2E}\sin 2\theta - \frac{\Delta m^2}{4E}\sin 2\theta - \frac{\Delta m^2}{4E}\cos 2\theta - \frac{C_{\mu\nu}}{2E}\right)
$$

The effective hamiltonian can be diagonalised: \bigodot

- For certain values of parameters b_{μ} , b_{τ} , $c_{\mu\mu}$, $c_{\tau\tau}$, resonant mixing for C-odd \bigodot and C-even states occurs.
- The neutrino-antineutrino mixing occurs only between C-even states and \bigodot C-odd states
- The condition for resonance needs to be satisfied. \bigodot

The MINOS Experiment

NuMI high intensity neutrino beam at Fermilab (Average power ~340 kW)

Near Detector:

- ‣ 100m deep, 1 km from source.
- ‣ Measure beam composition and energy spectrum.
- Far Detector:
	- ‣ 700m deep, 735 km from source.
	- ‣ Search for evidence of oscillations.
		- Alternating layers of 2.54cm steel and 1cm plastic scintillator with WLS and clear fibre.
		- \bigodot ~1.3T magnetic field.

Data collected:

- \cdot 10.71 x 10²⁰ POT (neutrino-optimised mode)
- ‣ 3.36 x 1020 POT (antineutrino-optimised mode)

Selecting Antineutrinos

- Positively charged tracks with interaction vertex inside the detector. 3
- To reduce the misidentified NC and v_μ CC background: \bigodot
	- ‣ A discriminant variable formed from 3 variables describing track properties.
	- ‣ Confidence of charge-sign determination from track fit.
	- ‣ Compare the track direction at the vertex to that at the end of the track. 11/27/2012 Richa Sharma, IIFC Meeting, November 26-27, 2012, Fermilab 7

Near To Far Extrapolation

- The ND spectrum is used to predict the FD spectrum. \bigodot
- Flux and cross-section uncertainties cancel. \bigcirc
- Using the Matrix Method extrapolation framework adapted for antineutrino oscillation analysis.

νμ = 91.7%

Generating FD $\overline{v}_μ$ Prediction

Far Detector $\overline{v}_μ$ Prediction

- The Far Detector prediction is made using the following parameters:
	- \triangle Δ m²=2.32x10⁻³ eV², sin²2 θ =0.97
	- \rightarrow b_u=3x10⁻²³, b_T=0.6x10⁻²³, c_{uu}=2x10⁻²³, c_{TT}=4x10⁻²³

Far Detector \overline{v}_μ Prediction

- The Far Detector prediction is made using the following parameters: \bigcirc
	- $\Delta m^2 = 2.32 \times 10^{-3}$ eV², sin²2θ=0.97
	- \rightarrow b_u=3x10⁻²², b_T=0.6x10⁻²², c_{uu}=2x10⁻²², c_{TT}=4x10⁻²²

 \bigcirc

Far Detector \overline{v}_μ Prediction

- The Far Detector prediction is made using the following parameters:
	- $\Delta m^2 = 2.32 \times 10^{-3} eV^2$, sin²2θ=0.97
	- \rightarrow b_u=3x10⁻²¹, b_T=0.6x10⁻²¹, c_{uu}=2x10⁻²¹, c_{TT}=4x10⁻²¹

parameters is increased.

 \bigcirc

Summary and Outlook

- \bigcirc Demonstrated that the v_{μ} to \overline{v}_{μ} transitions are governed by the size of Lorentz and CPT violating parameters.
- \bigcirc It is possible to see the signal for such transitions in MINOS.
- Working towards obtaining the sensitivity of MINOS to transitions and to \bigcirc obtain the parameters b_{μ} , b_{τ} , $c_{\mu\mu}$, $c_{\tau\tau}$ that govern them.
- \bigcirc This would be the major part of my thesis. First analysis with this model.
- I have also worked on the analysis of the 7% \overline{v}_μ component in the \bigcirc 7.1x1020 POT neutrino-optimised data.
- \bigcirc This analysis excluded the $(3.37 < |\Delta \overline{m}^2| < 1000 \text{)}$ x10⁻³ eV² at 90% C.L., assuming $sin^2 2\theta = 1$.
- \bigcirc The results have been published : P. Adamson et al. (MINOS Collaboration), **"Search for the disappearance of muon antineutrinos in the NuMI neutrino beam"**, Phys. Rev. D 84, 071103(R) (2011)

11/27/2012 Richa Sharma, IIFC Meeting, November 26-27, 2012, Fermilab 13

νμ = 91.7%

THANK YOU

BACKUP

Relation of b_{μ} , b_{τ} , $c_{\mu\mu}$ and $c_{\tau\tau}$ coefficients to more fundamental coefficients

The LV equations of motion can be written in analogy to the Dirac Equation:

$$
(i\Gamma_{AB}^{\nu}\partial_{\nu}-M_{AB})\nu_B=0,
$$

where

$$
\Gamma_{AB}^{\nu} = \gamma^{\nu} \delta_{AB} + c_{AB}^{\mu\nu} \gamma_{\mu} + d_{AB}^{\mu\nu} \gamma_5 \gamma_{\mu} + e_{AB}^{\nu} + if_{AB}^{\nu} + \frac{1}{2} g_{AB}^{\lambda \mu \nu} \sigma_{\lambda \mu},
$$

$$
M_{AB} = m_{AB} + im_{5AB} \gamma_5 + a_{AB}^{\mu} \gamma_{\mu} + b_{AB}^{\mu} \gamma_5 \gamma_{\mu} + \frac{1}{2} H_{AB}^{\mu \nu} \sigma_{\mu \nu}.
$$

 $c_{\mu\mu} = 2(c_L)^{TT}$ _{μμ} [1 + cos²O] $c_{\tau\tau} = 2(c_L)^{TT} \tau_{\tau\tau} [1 + cos^2\Theta]$

$$
b_{\mu} = -i \sin 2\Theta \tilde{g}^{ZT} \mu \bar{\mu}
$$

$$
b_{\tau} = -i \sin 2\Theta \tilde{g}^{ZT} \bar{\tau} \bar{\tau}
$$

 $\tilde{g}^{ZT} = g^{0ZT} + (i/2) \epsilon^{0Z} \lambda \rho g^{\lambda \rho T}$ Θ is the celestial colatitude $c_1 = c + d$

- Maximal experimental sensitivities attained for coefficients in the neutrino sector of minimal SME
- Experimental limits for $(c_L)_{\Pi_{\mu\mu}}$, $(c_L)_{\Pi_{\tau\tau}}$, $\tilde{g}^{\text{ZT}}_{\mu\overline{\mu}}$ and $\tilde{g}^{\text{ZT}}_{\tau\overline{\tau}}$ have not been obtained yet.

$$
P(V_{\mu} \rightarrow \overline{V}_{\mu})
$$

$$
P(\nu_{\mu} \to \bar{\nu}_{\mu}) = \frac{1}{4} * \left[\left(1 - \sin^{2} 2\theta_{c-odd} \sin^{2} \left(\Delta m^{2} \frac{L}{4E} \right) \right) + \left(1 - \sin^{2} 2\theta_{c-even} \sin^{2} \left(\Delta m^{2} \frac{L}{4E} \right) \right) \right]
$$

$$
- \frac{1}{2} * \left[\cos^{2} \theta_{c-odd} \cos^{2} \theta_{c-even} + \sin^{2} \theta_{c-odd} \sin^{2} \theta_{c-even} \right]
$$

$$
+ \cos^{2} \theta_{c-odd} \sin^{2} \theta_{c-even} \cos \left(\Delta m^{2} \frac{L}{4E} \right)
$$

$$
+ \sin^{2} \theta_{c-odd} \cos^{2} \theta_{c-even} \cos \left(\Delta m^{2} \frac{L}{4E} \right) \right] = P(\bar{\nu}_{\mu} \to \nu_{\mu})
$$

The relation between the effective and the standard mixing angles for C-odd and C-even states is given by:

$$
\tan 2\theta_{c-odd} = \frac{\Delta m^2 \sin 2\theta}{((b_\mu - b_\tau + c_{\mu\mu} - c_{\tau\tau}) E^2 + \Delta m^2 \cos 2\theta)};
$$

$$
\tan 2\theta_{c-even} = \frac{\Delta m^2 \sin 2\theta}{((-b_\mu + b_\tau + c_{\mu\mu} - c_{\tau\tau}) E^2 + \Delta m^2 \cos 2\theta)}
$$

Modified probabilities

Standard:

- $\Delta m^2 = 2.32 \times 10^{-3}$ eV², sin²2θ=0.97
- $b_{\mu}=0$, $b_{\tau}=0$, $c_{\mu\mu}=0$, $c_{\tau\tau}=0$

New:

- $\Delta m^2 = 2.32 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta = 0.97$
- b_u=3x10⁻²¹, b_T=0.6x10⁻²¹, c_{uu}=2x10⁻²¹, c_{TT}=4x10⁻²¹

