NCCS-WYIN catalog analysis

R. Ansari - O. Perdereau July 20, 2023

Preliminary

Thanks to J. Marriner, A. Stebbins, P. Timbie, G. Tucker, L. Robinthal and for observations and data reduction

- 1.The NCCS-WIYN catalog
- 2.Extinction effect
- 3. Understanding catalog magnitude and redshift distribution
- 4. Correlation function
- 5. Comparison with SDSS

1. NCCS-WIYN spectroscopic catalog (I)

WIYN_summary_v4.txt

BaseDataTable: NVar= 18 NEnt= 2801 (SegSize= 512 NbSegments= 6)

Units
_

	Nh chiecto
	ND ODJECTS
All	2801
Q>=0	1840
Q>=1	724
Q>=2	581
Q>=5	243
Q>=0&&Redshift>-0.05	732
Q>0&&Redshift>0.005	623

Quality distribution

1. NCCS-WIYN spectroscopic catalog (II)

2. Impact of extinction (I)

Some possible correlation visible

2. Impact of extinction (II)

NCCS WIYN tagets (ra,dec) distribution X Planck extinction Av map

Significant value of the correlation is observed (Note -GalCnt x Av to get positive correlation)

2. Impact of extinction (III)

NCCS ALL sources, magV<19 (ra,dec) distribution X Planck extinction Av map

But a slight anti correlation is observed for all NCCS sources (dec>81 deg, magV<19) !

2. Impact of extinction (IV)

NCCS ALL sources, magV<19 (ra,dec) distribution, Planck extinction Av map

Anti correlation also visible 'by eye' !

3. Catalog magnitude distribution

Vmag distribution well reproduced by a Schechter Gal. Lum. Function with M*=-20.3, slope=-1.3 + cosmology (luminosity distance + volume element = f(redshift) Schechter distribution renormalised

- Galaxy absolution magnitude distribution represented by a Schechter function
- Apparent magnitude distribution for each redshift obtained by applying distance module
- Cumulative apparent magnitude obtained by integrating volume weighting app-mag distribution up to redshift z=0.5
- NGal obtained by integrating app-mag up to m=18, 18.5 and 19
- NGalxEff is the galaxy count weighted by the redshift efficiency function

	NGal	NGalxEff
Vmag<18	1930	850
Vmag<18.5	3600	1220
Vmag<19	7500	1710
	# targets	# spec-z

Redshift finding efficiency function $\eta(m_V)$: $\eta(m_V) = \frac{1}{1 + \exp(a(m_V - m^*))}$ With : $m^* = 17$, a = 1

3. Magnitude distribution, redshift finding efficiency

2. Redshift distribution

4. Correlation function

Data auto-correlation function DD

Random catalog auto-correlation RR

Data x random cross-correlation DR

$$f_{PB}(d) = \frac{DD}{RR} - 1$$

$$f_{LSz}(d) = \frac{DD - 2DR + RR}{RR}$$

Check with SDSS

Extract galaxies from SDSS, in a 3.5 deg. radius around a reference point, Rmag<18

5.1 SDSS - Magnitude and redshift distribution

All within 3.5 degree of (ra,dec)=(150,50) 4250 galaxies (SDSS) to be compared to 2800 NCCS target galaxies

After efficiency application and magnitude <18 cut 1343 galaxies (SDSS) to be compared with 630 NCCS-WIYN with z-spec

Expected redshift distribution for a uniform galaxy catalogue

5.2 SDSS selected galaxies (ra,dec) distribution, rotated toward north pole

5.2 SDSS selected galaxies correlation function

Centered on (ra,dec)=(150,50)

Centered on (ra,dec)=(120,49)

5.2 SDSS selected galaxies

Centered on (ra,dec)=(150,60)

Preliminary conclusions

- NCCS galaxy number density has a significant correlation with extinction map near the NCP, within 3.5 deg, but this is not seen when extending the region to full NCCS, ~ 9 deg.
- Magnitude distribution reasonably well understood
- Correlation function shows too much structuring, compared to SDSS
- One possible reason is that redshift determination efficiency drops too sharply (effect not captured enough by the efficiency function)
- Maybe, this is partly genuine structuring in the sky?