
HEP-CCE Portable Parallelization Strategies

Matti Kortelainen
CSAID Roadmap meeting
9 November 2023

HEP-CCE

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

• Following slides show the outcome and remaining plans of the “Portable
Parallelization Strategies” thrust of the HEP-CCE “phase 1”
– Based on a review DOE had in July

• FNAL contributors
– Meghna Bhattacharya
– Matti Kortelainen
– Martin Kwok
– Alexei Strelchenko
– Oliver Gutsche (technical lead)

Introduction

2

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

Software and Hardware Support Matrix in 2019

3

CUDA Kokkos SYCL HIP OpenMP alpaka std::par

NVIDIA
GPU

codeplay hipcc nvc++

AMD GPU hipSYCL hipcc

Intel GPU oneAPI oneAPI:dpl

x86 CPU oneAPI gcc

FPGA

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

Software and Hardware Support Matrix in 2023

4

CUDA Kokkos SYCL HIP OpenMP alpaka std::par

NVIDIA
GPU hipcc

nvc++
LLVM, Cray

GCC, XL
nvc++

AMD GPU openSYCL
intel/llvm hipcc

AOMP
LLVM
Cray

Intel GPU oneAPI
intel/llvm

CHIP-SPV:
early prototype

Intel OneAPI
compiler prototype oneapi::dpl

x86 CPU
oneAPI

intel/llvm
openSYCL

via HIP-CPU
Runtime

nvc++
LLVM, CCE,

GCC, XL

FPGA via Xilinx
Runtime

prototype
compilers

(OpenArc, Intel,
etc.)

protytype via
 SYCL

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

• FastCaloSim
– ATLAS parameterized LAr calorimeter simulation
– 3 simple kernels (large workspace reset, main simulation, stream compaction)
– 1-D and 2-D jagged arrays
– small data transfer d->h at end of each event

• Patatrack
– CMS pixel detector reconstruction
– 40 kernels of varying complexity and lengths (many are short)
– good test for latency, concurrency, asynchronous execution, memory pools

• Wirecell Toolkit
– LArTPC signal simulation
– 3 kernels: rasterization, scatter-add, FFT convolution

• P2r: CMS "propagate-to-R" track reconstruction in a single kernel

HEP Testbeds

5

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

• FastCaloSim
– ATLAS parameterized LAr calorimeter simulation
– 3 simple kernels (large workspace reset, main simulation, stream compaction)
– 1-D and 2-D jagged arrays
– small data transfer d->h at end of each event

• Patatrack
– CMS pixel detector reconstruction
– 40 kernels of varying complexity and lengths (many are short)
– good test for latency, concurrency, asynchronous execution, memory pools

• Wirecell Toolkit
– LArTPC signal simulation
– 3 kernels: rasterization, scatter-add, FFT convolution

• P2r: CMS "propagate-to-R" track reconstruction in a single kernel

HEP Testbeds

6

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

Testbed Completion Status

7

Kokkos SYCL OpenMP Alpaka std::par

Patatrack Done Done* WIP Done* Done
compiler bugs

Wirecell Done Done Done no Done

FastCaloSi
m Done Done Done Done Done

P2R done Done OpenACC Done Done

• Ease of Learning
• Code conversion

– From CPU to GPU and between
different APIs

• Extent of modifications to existing
code
– Control of main, threading/execution

model

• Extent of modifications to the Data
Model

• Extent of modifications to the build
system

• Hardware Mapping

Metrics

8

• Feature Availability
• Interoperability

– Interaction with external libraries, thread
pools, C++ standards

• Address needs of large and small
workflows

• Long term sustainability and code
stability

• Compilation time
• Run time/Performance
• Ease of Debugging
• Aesthetics

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

• Three major steps of LArTPC simulation
– Rasterization: depositions ⟶ patches

(small 2D array, ~20×20)
• # depo ~100k for cosmic ray event

– Scatter adding: patches ⟶ grid
(large 2D array, ~10k×10k)

• Summary
– Restructured the code to expose

more parallelism
– Wrappers to use optimized vendor libraries
– Ported to CUDA (partial), Kokkos, SYCL, OpenMP and std::par implementations
– Developed a stand-alone testing framework (without LArSoft dependence)
– Validated and benchmarked Kokkos, SYCL and OpenMP implementations; Achieved

similar performance with different portability layers.

Wirecell Toolkit

9

Speedup in DepoTransform compared to original CPU
on NVIDIA V100, AMD Radeon Pro VII, and AMD
Ryzen 24-core CPU with Kokkos, SYCL and OpenMP

Higher is better

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

• p2r is a relatively lightweight benchmark
– Performs core math of track reconstruction (track propagation and Kalman updates)
– Easy to port
– Easy to experiment with features/data-layout

• Lessons learned:
– Alpaka/Kokkos give close-to-native performance in NVIDIA/AMD GPUs and CPU
– SYCL/std::par performance are significantly behind despite sharing very similar

implementation

P2r summary

10

AMD MI-100 GPU Intel Xeon Gold 6336Y CPUNVIDIA A100 GPU

Higher is better
Higher is better

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

• Most complex use case: CMS pixel detector reconstruction from raw data to pixel
tracks and vertices, multithreaded mock framework and build system
– closest approximation of integration in an experiment framework without actually doing it
– 40 kernels divided in 5 “framework modules” using rich set of CUDA features

Patatrack summary

11

Higher is better

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

Patatrack summary

12

• Lessons learned
– Best performance on CPU, and NVIDIA and AMD GPUs with Alpaka
– Kokkos currently difficult to work with in a concurrent application, overheads
– SYCL (Intel oneAPI implementation): compilation problems, overheads
– std::par: compilation problems, crashes, leads to many more kernels (expect poor

performance)
– OpenMP Target offload: compilation problems, data movement is concern

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

• Final stage of CCE/PPS is reporting back to experiments
– Not yet there, but have made multiple interim reports
– ACAT, CHEP, HSF, IRIS-HEP

• Already affected what HEP experiments are doing in both short and medium term
– CMS's choice of Alpaka
– ATLAS Run4 milestones
– DUNE signal processing kernels on GPUs
– Contributions to Snowmass21 process

• Continue to interact with HEP experiments as we close out phase 1 of CCE
– Focussed meetings and workshops with stakeholder experiments
– Continued engagement with broader HEP community

Impacts on HEP

13

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

• We have completed all major development work.
– uniform benchmarking on standard platforms
– investigating outstanding bugs with new compiler versions

• Remainder of year will be devoted to publishing and presenting results.
– individual reports for each testbed
– cross-cutting reports for portability layers
– reporting back to stakeholder experiments

• general meetings
• focussed workshops

– outreach to wider HEP and computing community
• Supercomputing 2023 BOF "Beyond Portability: How is your science domain coping with

the heterogeneous era of HPC?"
• Conferences
• HSF, IRIS-HEP, SWIFT

Plans for 2023

14

11/9/23 Matti Kortelainen | HEP-CCE Portable Parallelization Strategies

• There is no "one size fits all" solution. Different applications will have different
optimal solutions.
– We have identified pain points with each portability layer
– Allows us to offer useful guidance to experiments depending on their use cases

• Both software and hardware continue to rapidly evolve.
– Need to monitor GPU ecosystems and update recommendations as needed
– Emergence of C++ language level standards in the next 5 years may be a game changer

• See increasing use of ML solutions for previously purely "algorithmic" tasks and
vendor shifts to ML optimized hardware.
– Will expose a whole new set of issues

Conclusions

15

