

HEP-CCE Portable Parallelization Strategies

Matti Kortelainen CSAID Roadmap meeting 9 November 2023

Introduction

- Following slides show the outcome and remaining plans of the "Portable Parallelization Strategies" thrust of the HEP-CCE "phase 1"
 - Based on a review DOE had in July
- FNAL contributors
 - Meghna Bhattacharya
 - Matti Kortelainen
 - Martin Kwok
 - Alexei Strelchenko
 - Oliver Gutsche (technical lead)

Software and Hardware Support Matrix in 2019

	CUDA	Kokkos	SYCL	HIP	OpenMP	alpaka	std::par
NVIDIA GPU			codeplay	hipcc			nvc++
AMD GPU			hipSYCL	hipcc			
Intel GPU			oneAPI				oneAPI:dpl
x86 CPU			oneAPI				gcc
FPGA							

Software and Hardware Support Matrix in 2023

	CUDA	Kokkos	SYCL	HIP	OpenMP	alpaka	std::par
NVIDIA GPU				hipcc	nvc++ LLVM, Cray GCC, XL		nvc++
AMD GPU			openSYCL intel/llvm	hipcc	AOMP LLVM Cray		
Intel GPU			oneAPI intel/llvm	CHIP-SPV: early prototype	Intel OneAPI compiler	prototype	oneapi::dpl
x86 CPU			oneAPI intel/IIvm openSYCL	via HIP-CPU Runtime	nvc++ LLVM, CCE, GCC, XL		
FPGA				via Xilinx Runtime	prototype compilers (OpenArc, Intel, etc.)	protytype via SYCL	

4

HEP Testbeds

- FastCaloSim
 - ATLAS parameterized LAr calorimeter simulation
 - 3 simple kernels (large workspace reset, main simulation, stream compaction)
 - 1-D and 2-D jagged arrays
 - small data transfer d->h at end of each event
- Patatrack
 - CMS pixel detector reconstruction
 - 40 kernels of varying complexity and lengths (many are short)
 - good test for latency, concurrency, asynchronous execution, memory pools

🚰 Fermilab

- Wirecell Toolkit
 - LArTPC signal simulation
 - 3 kernels: rasterization, scatter-add, FFT convolution
- P2r: CMS "propagate-to-R" track reconstruction in a single kernel

HEP Testbeds

- FastCaloSim
 - ATLAS parameterized LAr calorimeter simulation
 - 3 simple kernels (large workspace reset, main simulation, stream compaction)
 - 1-D and 2-D jagged arrays
 - small data transfer d->h at end of each event
- Patatrack
 - CMS pixel detector reconstruction
 - 40 kernels of varying complexity and lengths (many are short)
 - good test for latency, concurrency, asynchronous execution, memory pools

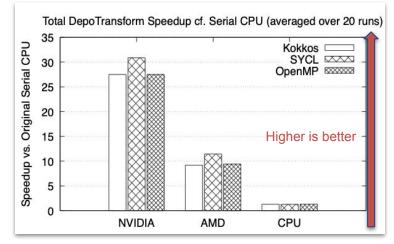
🗲 Fermilab

- Wirecell Toolkit
 - LArTPC signal simulation
 - 3 kernels: rasterization, scatter-add, FFT convolution
- P2r: CMS "propagate-to-R" track reconstruction in a single kernel

Testbed Completion Status

	Kokkos	SYCL	OpenMP	Alpaka	std::par
Patatrack	Done	Done*	WIP	Done*	Done compiler bugs
Wirecell	Done	Done	Done	no	Done
FastCaloSi m	Done	Done	Done	Done	Done
P2R	done	Done	OpenACC	Done	Done

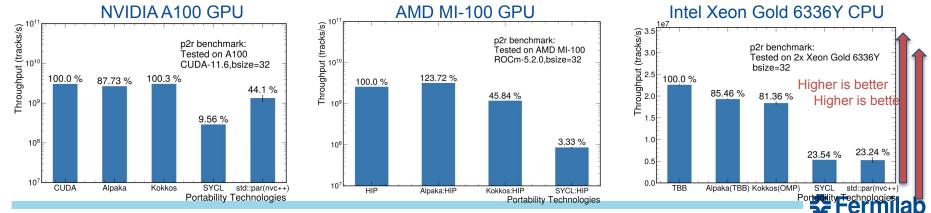
Metrics


- Ease of Learning
- Code conversion
 - From CPU to GPU and between different APIs
- Extent of modifications to existing code
 - Control of main, threading/execution model
- Extent of modifications to the Data Model
- Extent of modifications to the build system
- Hardware Mapping

- Feature Availability
- Interoperability
 - Interaction with external libraries, thread pools, C++ standards
- Address needs of large and small workflows
- Long term sustainability and code stability
- Compilation time
- Run time/Performance
- Ease of Debugging
- Aesthetics

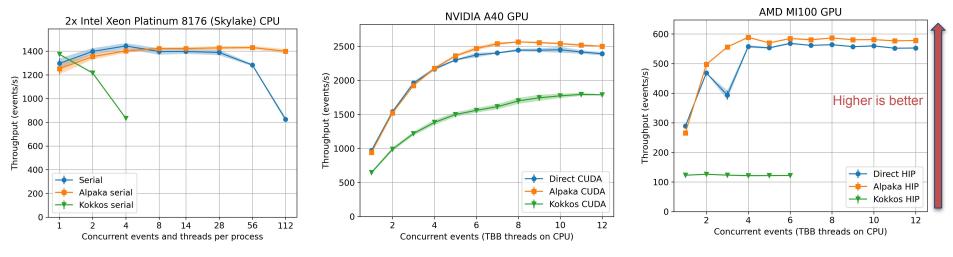
Wirecell Toolkit

- Three major steps of LArTPC simulation
 - **Rasterization**: depositions \rightarrow patches (small 2D array, ~20×20)
 - # depo ~100k for cosmic ray event
 - Scatter adding: patches \rightarrow grid (large 2D array, ~10k×10k)
- Summary
 - Restructured the code to expose more parallelism
 - Wrappers to use optimized vendor libraries
 - Ported to CUDA (partial), Kokkos, SYCL, OpenMP and std::par implementations
 - Developed a stand-alone testing framework (without LArSoft dependence)
 - Validated and benchmarked Kokkos, SYCL and OpenMP implementations; Achieved similar performance with different portability layers.


Speedup in DepoTransform compared to original CPU on NVIDIA V100, AMD Radeon Pro VII, and AMD Ryzen 24-core CPU with Kokkos, SYCL and OpenMP

🚰 Fermilab

9


P2r summary

- p2r is a relatively lightweight benchmark
 - Performs core math of track reconstruction (track propagation and Kalman updates)
 - Easy to port
 - Easy to experiment with features/data-layout
- Lessons learned:
 - Alpaka/Kokkos give close-to-native performance in NVIDIA/AMD GPUs and CPU
 - SYCL/std::par performance are significantly behind despite sharing very similar implementation

Patatrack summary

- Most complex use case: CMS pixel detector reconstruction from raw data to pixel tracks and vertices, multithreaded mock framework and build system
 - closest approximation of integration in an experiment framework without actually doing it
 - 40 kernels divided in 5 "framework modules" using rich set of CUDA features

Patatrack summary

- Lessons learned
 - Best performance on CPU, and NVIDIA and AMD GPUs with Alpaka
 - Kokkos currently difficult to work with in a concurrent application, overheads
 - SYCL (Intel oneAPI implementation): compilation problems, overheads
 - std::par: compilation problems, crashes, leads to many more kernels (expect poor performance)
 - OpenMP Target offload: compilation problems, data movement is concern

Impacts on HEP

- Final stage of CCE/PPS is reporting back to experiments
 - Not yet there, but have made multiple interim reports
 - ACAT, CHEP, HSF, IRIS-HEP
- Already affected what HEP experiments are doing in both short and medium term
 - CMS's choice of Alpaka
 - ATLAS Run4 milestones
 - DUNE signal processing kernels on GPUs
 - Contributions to Snowmass21 process
- Continue to interact with HEP experiments as we close out phase 1 of CCE
 - Focussed meetings and workshops with stakeholder experiments
 - Continued engagement with broader HEP community

Plans for 2023

- We have completed all major development work.
 - uniform benchmarking on standard platforms
 - investigating outstanding bugs with new compiler versions
- Remainder of year will be devoted to publishing and presenting results.
 - individual reports for each testbed
 - cross-cutting reports for portability layers
 - reporting back to stakeholder experiments
 - general meetings
 - focussed workshops
 - outreach to wider HEP and computing community
 - Supercomputing 2023 BOF "Beyond Portability: How is your science domain coping with the heterogeneous era of HPC?"

🌫 Fermilab

- Conferences
- HSF, IRIS-HEP, SWIFT

Conclusions

- There is no "one size fits all" solution. Different applications will have different optimal solutions.
 - We have identified pain points with each portability layer
 - Allows us to offer useful guidance to experiments depending on their use cases
- Both software and hardware continue to rapidly evolve.
 - Need to monitor GPU ecosystems and update recommendations as needed
 - Emergence of C++ language level standards in the next 5 years may be a game changer
- See increasing use of ML solutions for previously purely "algorithmic" tasks and vendor shifts to ML optimized hardware.
 - Will expose a whole new set of issues

