HEP-CCE

HEP CCE Input/Ouput
Storage (10S)

Saba Sehrish for the HEP CCE I0OS team

CSAID Roadmap meeting November 2023

© ENERGY I Argonne & sreownnven = Fermilab Bl serkeLey Las

AAAAAAAAAAAAAAAAAA

HEP-CCE

Acknowledgement

These are the slides that were presented at the DOE review in
July (few ATLAS-specific slides removed), and the last slide is
from the next phase of CCE planning.

)ENERGY | e o Argonne & Brookunven 2t Earmilab B

AAAAAAAAAAAAAAAAAA

©

ij BERKELEY LAB
Bringing Science Solutiens to the World

Input/Output and Storage: Fermilab Participants

Philippe Canal

Patrick Gartung

Ken Herner

Christopher Jones

Kyle Knoepfel

Saba Sehrish

Elizabeth Sexton-Kennedy

HEP-CCE

U.S. DEPARTMENT OF Office of
ﬁ EN ERGY Science

AAAAAAAAAAAAAAAAAA

ij BERKELEY LAB
Bringing Science Solutiens to the World

HEP-CCE
CCE IOS Activities

Measuring performance of ROOT 1/O in HEP workflows on HPC systems

» Darshan (a scalable HPC 1/O characterization tool) has been enhanced (including fork safety)
and used to monitor HEP production workflows

» Use Darshan to monitor 1/O for various HEP production workflows on HPC

Mimicking framework for understanding scalability and performance of HEP output methods
» Experiment agnostic tool allows scaling I/O beyond what is currently accessible by production
and has uncovered/fixed bottlenecks in ROOT and frameworks

Investigate HDF5 as an intermediate event storage for HPC processing

* Relying on ROOT to serialize complex Event Data Model used in Simulation/Reconstruction workflows
« Implementing Collective Writing to avoid potential merge step

HPC friendly Data Model

» Together with PPS team started investigating efforts to make data model more suitable for
offloading to accelerators and storage on HPC systems

© ENERGY I Argonne & Broounnven 2= Fermilab BB serkeLey L

NATIONAL LABORATORY Bringing Science Solutions to the World

Darshan: Measuring performance of ROOT I/O in HEP HEP-CCE
workflows on HPC systems

Darshan https://www.mcs.anl.gov/research/projects/darshan/

» Darshan is a lightweight 1/O characterization tool that captures concise views and entire traces (DXT) of
applications’ I/O behavior

» Widely available — Deployed at many HPC facilities
m LCFs, NERSC, etc. and CVMFS

Popular tool for HPC users to better understand their I/O workloads
m Easy to use — no code changes required
m Modular — straightforward to add new instrumentation sources

Darshan enhancements for HEP use cases
* Improved filtering of what files are tracked, to focus on data of interest
* Instrumentation of non-MPI jobs was exercised and improved to meet HEP workflow needs

» Clean handling of fork() was implemented to separate child I/O from parent, important for ATLAS (using
multi-process AthenaMP) and DUNE (python wrapper)

B, U.S. DEPARTMENT OF Oﬁlce of

© ENERGY oo Argonne & BrookunveN 2= Fermilab

NATIONAL LABORATORY “
NATIONAL LABORATORY

= BERKELEY LAB

Bringing Science Solutiens to the World

https://www.mcs.anl.gov/research/projects/darshan/

CMS workflow

e Created a native build of CMSSW data
dictionary libraries on supercomputers
for use with CCE-IOS serialization test
framework

e Measured ROOT IO for a CMSSW
workflows on shared and local file
system with Darshan

e Compared the Darshan reports for

cmsRun (1/28/2021)

HEP-CCE

| jobid: 3698 [uid: 72001 [nprocs: 1

[runtime: 383 seconds

1/0 performance estimate (at the POSIX layer): transferred 456.7 MiB at 321.38 MiB/s
1/0 performance estimate (at the STDIO layer): transferred 0.0 MiB at 2.61 MiB/s

Count (Tom, M Pre

T

200 %, b B % % % 0

Most Common Access Sizes

200000
180000
160000

140000

2 120000

g
& 60000

POSIX 'O Pattemn

Read

Write

Total mmmmm Consecutive ===

File Count Summary
(estimated by POSIX I/0O access offsets)

Sequential EE—

shared and local filesystem. (POSIX or MPI-10) / : .
[access size | count type | number of files | avg. size | max size
e The I/O rates are consistent with those =15 total opened 7] 269M[196G
271 108 read-only files 3 619M 1.9G
expected for local HDD/SSD and POSIX 399 | gy write-only files 2| 13M| 26M
i 203 79 read/write files 0 0 0
shared file systems. created files 2| 13M| 26M

e Example Darshan report ->
cmsRun step4 PAT PU.py
U.S. DEPARTMENT OF Ofﬁce Of -~ J n = i X
aENERGY i Argon ne d BROOKHRVEN == Fermilab Bl BERKELEY LAB

NATIONAL LABORATORY

Bringing Science Solutions to the World

DUNE workflow

e Studied some DUNE workflows and
built Darshan against usual DUNE
software release both on dunegpvms
and NERSC (inside usual container)
Similar access patterns as CMS
Used this summer as part of
benchmarking studies for upcoming
Ceph migration. Some unexpected
results, including identifying some
sub-optimal networking setups on EAF.

HEP.CCE

Performance Estimate (at the POSIX Layer)

350 324.8

250

150 131.95

100
50
0

Speed (MiB/s)

Current Ceph (Dunegpvm)
Filesystems

Average I/O cost per process

Percentage of run time

S,
()
()

AO@
2

Read mmmmm
Write s
Metadata mmmm

281.43 (numbers from

Darshan runs)

Ceph (EAF)

Average /O cost per process

Percentage of run time

S,
)
)

2
Q
S,
2

Read mmmmm

Write

Metadata

Other (including application compute) mm—

_> Other (including application compute)
Fig 3. The percentage of time the machine Fig 4. The percentage of time the
spent on reading, writing, Metadata, and machine spent on reading, writing,
computing for the Ceph Filesystem. Metadata, and computing for the current
— — | Filesystem.
Nehemyah Green, GEM student
: Yy
U.S. DEPARTMENT OF Of‘flce Of ° BHOOKﬁﬂ“E" n = =
EN ERGY Science Argon ne NATIONAL LABORATORY s Fermllab Z2il BERKELEY LAB

NATIONAL LABORATORY

Bringing Science Solutions to the World

Mimicking framework HEP-CCE

Mimicking framework for understanding scalability and performance of HEP output methods
» Experiment agnostic tool allows scaling I/O beyond what is currently accessible by production

» Easily try different approaches and 1/O technologies

» With ability to read actual experiment ROOT files

* Make it easier to study read/write performance and thread scalability

» Can test input and output formats and approximate HEP job timings
» Has uncovered/fixed bottlenecks in ROOT and frameworks, e.g. ROOT PR 6062

Frequent setting of an atomic value

Number of Threads

! I
I o 2 | 32 ‘ \
| & i i B ” 7T
| 2 Version_t GetClassVersion() const { o I
| & 15 fVersionUsed = kTRUE; o 24 ; I
o) 8 return fClassVersion; } = ,”\z |
oo S5 * |
1 5E 23 ad .
= =26 A"
| L 3 E |
| © o5 Changed to 2 |
12 g J 1
= . . i) 8 |
I = 0 Version_t GetClassVersion() const { = / |
I 0 8 16 24 32 if (!fVersionUsed.load()) k= e 1
| fVersionUsed = kTRUE; 0 Ll I |
1 Number of Threads return fClassVersion; } 0 8 16 24 2
' I
! I

@ENERGY e Argonne & BROOKHRUEN 2= Fermilab Bl serkeLEY LaB

NATIONAL LABORATORY Bringing Science Solutions to the World

https://github.com/hep-cce2/root_serialization.git
https://github.com/root-project/root/commit/1eebdc8398a1f1f32f907b3e5dea0b0ee7809eb6

HPC storage systems HEP-CCE

Optimizing HEP workflow I/0 for HPC storage systems
» Differences in HTC and HPC storage resources means current HEP computing workflows may use HPC systems

suboptimally
Application

« HPCs use parallel file systems for data-storage and access pightevellOLiomn

* HPCs have an established 1/O software stack used to support parallel file system I/O Middleware
» High Level libraries can hook into the HPC I/O stack
» Allows us to take advantages of optimizations such as collective 1/0O
* ROOT has been I/0O & storage workhorse of HEP experiments Parallel File System
+ HEP data models are complex
* Use ROOT to read and write data into ROOT::TTree
» However, storage backends such as HDF5 are better integrated with HPCs and their
expert community
* Not an effort to replace ROOT (TTree) storage!
» But augment workflows capability to store intermediate data in HDF5 for HPC processing

I/O Forwarding

I/O Hardware

= BERKELEY LAB

Bringing Science Solutiens to the World

© ENERGY ™ Argonne & Brookunven 2 Earmilab

NATIONAL LABORATORY

1
0

Investigate HDF5 as intermediate

HEP-CCE

event storage for HPC processing

Use ROOT serialization to hide HEP data model complexity from HDF5
» Keeps using one of ROOT’s proven strength that has been developed as part of the HEP community

« and on which much of HEP data model were build
* Means HDF5 only has to manage binary data (BLOB)

+ could be seen as an obstruction for final data, but this is intended for intermediate data only

» Data Products are experiment specific C++ objects
usually written in ROOT format

» Use ROOT as common tool to serialize C++ objects
into byte stream array buffers

 HDF5 Datasets store serialized data products with
mapping optimized for parallel 1/0. Mapping is
independent of experiments

* Mapping can be done either on Data Product or
Event level, depending on access needs

W

Even 1] 1 ROOT to Serialize

E.\.Ient 2 J l |

-------- H5::Dataset
W_JAdditional H5::Dataset to store

navigational information like buffer
sizes of events in X and Y.

w ROOT to Serialize T

Evenu
Event 2 J

B, U.S. DEPARTMENT OF Oﬁlce of

135 EN ERGY Science

Argonne &

NATIONAL LABORATORY

= BERKELEY LAB

Bringing Science Solutiens to the World

BROOKHIAEN 2% Carmilab

Parallel HDF5 results HEP-CCE

Parallel HDF5 Total throughput vs total number of threads
* In addition to using serial HDF5 and understanding SRR et
its Usabmty and performance in the HEP application 1RRA0N @ 1MPIRankPerNode ® 4 MP|Ranks Per Node e
space, 10S also worked on designing and 5 500000 7///'/
implementing output modules with parallel HDF5 5 P
« Parallel HDF5 allows multiple processes to write to é 2000080 ///./
a single output file. It eliminates the need for B 2500000 //./
. . (o]
merging files = “z_/‘:/,,,/"//’—‘
o0 1000 2000 3000 4000
Total threads
1/0 Calls Fraction of
Total I/O
Time Results
) » Studies with ROOT-serialized events on
| MPI calls (external to HDF5) 14% CORI@NERSC showed good scaling
Write data into HDF fil 329, * For collective I/O the MPI call overhead
rite data into e ° (coordinating data placement) was found to be
Other (including serialization) 54% small
£ * U.S. DEPARTMENT OF Office of &
© ENERGY O7C Argonne & BROoKHRVEN 3% Formilab BB serkeLey LA

NATIONAL LABORATORY Bringing Science Solutions to the World

Leveraging HDF5 work for an HEP-CCE
HPC-friendly data model

Complexity of the HEP data model is a challenge for both efficient offloading and storage

+ Solution should address both requirements
» Writing data to HDF5 via ROOT serialization will not allow these objects to be offloaded to GPU

DataProductsas | .« Continue work on HDF5 and other storage
o omon technologies for HEP data without ROOT
— z serialization;
?vsirtﬁlggon * ProtoDUNE and DUNE are the primary
targets

* Some data products for ATLAS/CMS do not
rely on very complex data models
m E.g, the structure of analysis products is | write
much simpler and could potentially be
stored in HDF5 with direct mapping

U.S. DEPARTMENT OF Off f | - X
@ ENERGY o2 Argonne & BRookHAvEN J Eormilab BBl serkeLey LAB

NATIONAL LABORATORY Bringing Science Solutions to the World

HPC friendly Data Model: First Steps HEP-CCE

Work on developments for HPC Friendly Data Models for HEP experiments was initiated by 10S &
PPS:

» Modern HPCs rely on heterogeneous resources (often CPU+GPU) for compute acceleration
« HEP data models: Heavily object-oriented and therefore

 typically not GPU (and thus HPC) friendly
« challenging to store in store backends such as HDF5

» Survey carried out by HEP-CCE on experiments’ efforts to make their data model HPC friendly
« Speakers from ATLAS, CMS, DUNE, NOvA and EDM4HEP developers invited to share their
experience on developing HPC friendly data models
» Results recorded: https://github.com/hep-cce2/GPU-DM

« Goal is not to duplicate these efforts, but augment them to make results more generic and alloc
common use

B, U.S. DEPARTMENT OF Oﬁlce of

© ENERGY ™° Argonne & BRooKHRUEN 2% Eormilab B

NATIONAL LABORATORY

| BERKELEY LAB

Bringing Science Solutiens to the World

https://github.com/hep-cce2/GPU-DM

QN

Input/Output and Storage: Summary HEP-CCE

Work of the HEP-CCE/IOS team has resulted in:
» Worthwhile insight to I/O behavior of HEP workflows
* Including on HPC and for scales beyond current production
» Fixes/enhancements to common software and experiments frameworks

« Darshan included fork-safety and better filtering for 1/O.
ROOT serialization bottleneck was fixed

Patch to resolve the Athena library issue on DSO loading hooks which cause PyRoot crash when running
with Darshan

* Prototype development of new functionality in collaboration with experiments:
» ATLAS developed functionality to store their production data in HDF5

"'"""..‘ U.S. DEPARTMENT OF

© ENERGY oo Argonne & Brookhaven 3= Fermilab

= BERKELEY LAB

Bringing Science Solutiens to the World

Next CCE: Storage Optimization (SOP) Topics HEP-CCE

HEP-CCE/IOS is looking forward to optimizing Data Storage for next-generation HEP experiments:

* Applying Lessons Learned to HEP Experiments, Mimicking Framework, Darshan and HDF5
* Tracking and aiding the evolution of ROOT I/O, in particular RN Tuple

* Reduced Precision and Intelligent Domain-specific Compression Algorithms

« Object Stores and Strategies for Data Placement and Replication

* Optimized Data Delivery to HPC systems

© ENERGY o Argonne & Brookunven 2% Eormilab BB serkeLey Las

NATIONAL LABORATORY Bringing Science Solutions to the World

