
HEP-CCE

HEP CCE Input/Ouput
Storage (IOS)

Saba Sehrish for the HEP CCE IOS team

CSAID Roadmap meeting November 2023

HEP-CCE
Acknowledgement

These are the slides that were presented at the DOE review in
July (few ATLAS-specific slides removed), and the last slide is
from the next phase of CCE planning.

HEP-CCEInput/Output and Storage: Fermilab Participants

Philippe Canal
Patrick Gartung
Ken Herner
Christopher Jones
Kyle Knoepfel
Saba Sehrish
Elizabeth Sexton-Kennedy

HEP-CCE
CCE IOS Activities

Measuring performance of ROOT I/O in HEP workflows on HPC systems
• Darshan (a scalable HPC I/O characterization tool) has been enhanced (including fork safety)

and used to monitor HEP production workflows
• Use Darshan to monitor I/O for various HEP production workflows on HPC

Mimicking framework for understanding scalability and performance of HEP output methods
• Experiment agnostic tool allows scaling I/O beyond what is currently accessible by production

and has uncovered/fixed bottlenecks in ROOT and frameworks

Investigate HDF5 as an intermediate event storage for HPC processing

• Relying on ROOT to serialize complex Event Data Model used in Simulation/Reconstruction workflows
• Implementing Collective Writing to avoid potential merge step

HPC friendly Data Model

• Together with PPS team started investigating efforts to make data model more suitable for
offloading to accelerators and storage on HPC systems

HEP-CCEDarshan: Measuring performance of ROOT I/O in HEP
workflows on HPC systems

Darshan enhancements for HEP use cases
• Improved filtering of what files are tracked, to focus on data of interest
• Instrumentation of non-MPI jobs was exercised and improved to meet HEP workflow needs
• Clean handling of fork() was implemented to separate child I/O from parent, important for ATLAS (using

multi-process AthenaMP) and DUNE (python wrapper)

5

Darshan https://www.mcs.anl.gov/research/projects/darshan/
• Darshan is a lightweight I/O characterization tool that captures concise views and entire traces (DXT) of

applications’ I/O behavior
• Widely available – Deployed at many HPC facilities

■ LCFs, NERSC, etc. and CVMFS
• Popular tool for HPC users to better understand their I/O workloads

■ Easy to use – no code changes required
■ Modular – straightforward to add new instrumentation sources

https://www.mcs.anl.gov/research/projects/darshan/

HEP-CCE
CMS workflow

● Created a native build of CMSSW data
dictionary libraries on supercomputers
for use with CCE-IOS serialization test
framework

● Measured ROOT IO for a CMSSW
workflows on shared and local file
system with Darshan

● Compared the Darshan reports for
shared and local filesystem.

● The I/O rates are consistent with those
expected for local HDD/SSD and
shared file systems.

● Example Darshan report ->

HEP-CCE
DUNE workflow

● Studied some DUNE workflows and
built Darshan against usual DUNE
software release both on dunegpvms
and NERSC (inside usual container)

● Similar access patterns as CMS
● Used this summer as part of

benchmarking studies for upcoming
Ceph migration. Some unexpected
results, including identifying some
sub-optimal networking setups on EAF.
->

Nehemyah Green, GEM student

(numbers from
Darshan runs)

HEP-CCEMimicking framework

Mimicking framework for understanding scalability and performance of HEP output methods
• Experiment agnostic tool allows scaling I/O beyond what is currently accessible by production

• Easily try different approaches and I/O technologies
• With ability to read actual experiment ROOT files
• Make it easier to study read/write performance and thread scalability
• Can test input and output formats and approximate HEP job timings

• Has uncovered/fixed bottlenecks in ROOT and frameworks, e.g. ROOT PR 6062

8

https://github.com/hep-cce2/root_serialization.git
https://github.com/root-project/root/commit/1eebdc8398a1f1f32f907b3e5dea0b0ee7809eb6

HEP-CCEHPC storage systems

Optimizing HEP workflow I/O for HPC storage systems
• Differences in HTC and HPC storage resources means current HEP computing workflows may use HPC systems

suboptimally

• HPCs use parallel file systems for data-storage and access
• HPCs have an established I/O software stack used to support parallel file system

• High Level libraries can hook into the HPC I/O stack
• Allows us to take advantages of optimizations such as collective I/O

• ROOT has been I/O & storage workhorse of HEP experiments
• HEP data models are complex
• Use ROOT to read and write data into ROOT::TTree

• However, storage backends such as HDF5 are better integrated with HPCs and their
expert community

• Not an effort to replace ROOT (TTree) storage!
• But augment workflows capability to store intermediate data in HDF5 for HPC processing

9

HEP-CCEInvestigate HDF5 as intermediate
event storage for HPC processing

Use ROOT serialization to hide HEP data model complexity from HDF5
• Keeps using one of ROOT’s proven strength that has been developed as part of the HEP community

• and on which much of HEP data model were build
• Means HDF5 only has to manage binary data (BLOB)

• could be seen as an obstruction for final data, but this is intended for intermediate data only

• Data Products are experiment specific C++ objects
usually written in ROOT format

• Use ROOT as common tool to serialize C++ objects
into byte stream array buffers

• HDF5 Datasets store serialized data products with
mapping optimized for parallel I/O. Mapping is
independent of experiments

• Mapping can be done either on Data Product or
Event level, depending on access needs

Data Product
(X)
Event 1
Event 2
..

Data Product
(Y)
Event 1
Event 2
..

ROOT to Serialize

ROOT to Serialize

H5::Dataset

Additional H5::Dataset to store
navigational information like buffer
sizes of events in X and Y.

1
0

HEP-CCEParallel HDF5 results

Parallel HDF5
• In addition to using serial HDF5 and understanding

its usability and performance in the HEP application
space, IOS also worked on designing and
implementing output modules with parallel HDF5

• Parallel HDF5 allows multiple processes to write to
a single output file. It eliminates the need for
merging files

1
1

I/O Calls Fraction of
Total I/O

Time

MPI calls (external to HDF5) 14%

Write data into HDF5 file 32%

Other (including serialization) 54%

Results
• Studies with ROOT-serialized events on

CORI@NERSC showed good scaling
• For collective I/O the MPI call overhead

(coordinating data placement) was found to be
small

HEP-CCELeveraging HDF5 work for an
HPC-friendly data model

Complexity of the HEP data model is a challenge for both efficient offloading and storage
• Solution should address both requirements
• Writing data to HDF5 via ROOT serialization will not allow these objects to be offloaded to GPU

• Continue work on HDF5 and other storage
technologies for HEP data without ROOT
serialization;

• ProtoDUNE and DUNE are the primary
targets

• Some data products for ATLAS/CMS do not
rely on very complex data models
■ E.g., the structure of analysis products is

much simpler and could potentially be
stored in HDF5 with direct mapping

Data Products as
Complex C++ Objects

(In Memory)

Binary Objects

HDF5 Format

Serialize
(with ROOT)

Write

HPC Friendly Data
Products

(In Memory)

HDF5 Format

Write

Compute
accelerator
(e.g. GPU)

Offload1
2

HEP-CCEHPC friendly Data Model: First Steps

Work on developments for HPC Friendly Data Models for HEP experiments was initiated by IOS &
PPS:
• Modern HPCs rely on heterogeneous resources (often CPU+GPU) for compute acceleration
• HEP data models: Heavily object-oriented and therefore

• typically not GPU (and thus HPC) friendly
• challenging to store in store backends such as HDF5

• Survey carried out by HEP-CCE on experiments’ efforts to make their data model HPC friendly
• Speakers from ATLAS, CMS, DUNE, NOvA and EDM4HEP developers invited to share their

experience on developing HPC friendly data models
• Results recorded: https://github.com/hep-cce2/GPU-DM
• Goal is not to duplicate these efforts, but augment them to make results more generic and alloc

common use

https://github.com/hep-cce2/GPU-DM

HEP-CCEInput/Output and Storage: Summary

Work of the HEP-CCE/IOS team has resulted in:
• Worthwhile insight to I/O behavior of HEP workflows

• Including on HPC and for scales beyond current production
• Fixes/enhancements to common software and experiments frameworks

• Darshan included fork-safety and better filtering for I/O.
• ROOT serialization bottleneck was fixed
• Patch to resolve the Athena library issue on DSO loading hooks which cause PyRoot crash when running

with Darshan
• Prototype development of new functionality in collaboration with experiments:

• ATLAS developed functionality to store their production data in HDF5

1
4

HEP-CCE

HEP-CCE/IOS is looking forward to optimizing Data Storage for next-generation HEP experiments:

• Applying Lessons Learned to HEP Experiments, Mimicking Framework, Darshan and HDF5
• Tracking and aiding the evolution of ROOT I/O, in particular RNTuple
• Reduced Precision and Intelligent Domain-specific Compression Algorithms
• Object Stores and Strategies for Data Placement and Replication
• Optimized Data Delivery to HPC systems

Next CCE: Storage Optimization (SOP) Topics

