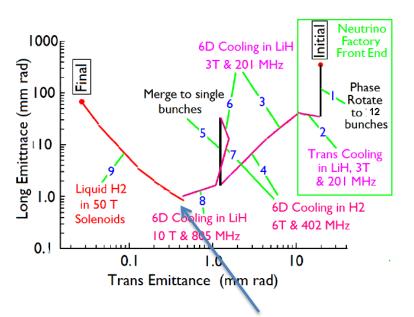


Preliminary Design of the $\mu^+\mu^-$ Higgs Factory Ring Lattice

Y. Alexahin (FNAL APC)


MAP Weekly Meeting, November 9, 2012

125 GeV Higgs Factory (D.Neuffer)

The major advantage of a $\mu^+\mu^-$ Higgs Factory – the possibility of direct measurement of the Higgs boson width (Γ ~3MeV FWHM expected):

 $m_{h_{ev}} = 110 \text{ GeV}, \epsilon L = 0.00125 \text{fb}^{-1} \text{ per bin}$ $S/\sqrt{B}=4$ at peak R=0.003% 100 0.002 GeV $\Gamma_{h_{SM}}=3$ MeV 80 Events / 60 40 109.98 110 110.02 109.96 110.04 \sqrt{s} (GeV)

Number of events and statistical errors in the final state $b\overline{b}$ as a function of \sqrt{s} (M.Berger, 2008) a very small beam energy spread is required, $\mathsf{R}{\sim}0.003\%$

Dave's proposal: stop cooling here:

 $\epsilon_{\perp N} = 0.3\pi \cdot \text{mm} \cdot \text{rad}, \ \epsilon_{\parallel N} = 1\pi \cdot \text{mm} \cdot \text{rad}$ The machine must be able to digest even higher emittances (at the price of larger β^*)

Parameter	Unit	Value
Beam energy	GeV	62.5
Number of IPs	-	1
Number of bunches / beam	-	1
Number of muons / bunch	10 ¹²	$1.5 \rightarrow 2$
Normalized emittance, $\epsilon_{\perp N}$	π·mm·rad	0.3
Long. emittance, $\epsilon_{\parallel N}$	π·mm·rad	1.0
Beam energy spread	%	0.003*
Bunch length, σ_s	cm	5.64
Repetition rate	Hz	$10 \rightarrow 30$
p-driver power	MW	$1 \rightarrow 4$

*) For initial scan a factor of 3-5 higher energy spread is needed, the machine must handle it.

The goal for the ring circumference is C=300m

HF Ring Design – Y.Alexahin,

MAP Weekly Meeting, 11/09/2012

- Large $\epsilon_{\perp N} \to$ small β^* to achieve the required luminosity \to very large IR magnet apertures
- Detector protection from backgrounds \rightarrow it's desirable that longest & strongest IR quad was defocusing \rightarrow quadruplet FF (also good for smaller β max)
- β^* variation in wide range (2cm 10cm)

• Preservation of small σ_{E} in the presence of strong self-fields (Ipeak ~ 500A !) \rightarrow requirements on RF and momentum compaction

• Do we need chromaticity correction for σ_E/E as low as $3 \cdot 10^{-5}$? – There are effects which may require it

- Let us start with the last two items

To obtain small σ_{E} with high $\epsilon_{||} \rightarrow$ high $\beta_{||}$ is required:

$$\sigma_E / E = \sqrt{\varepsilon_{\parallel} / \beta_{\parallel}} = 3 \cdot 10^{-5} \rightarrow \beta_{\parallel} \approx 1880 \, m, \ \beta_{\parallel} = \frac{\alpha_c C}{2\pi Q_s} = C \sqrt{\frac{\alpha_c E}{2\pi h V_{RF} \cos \varphi_s}}$$

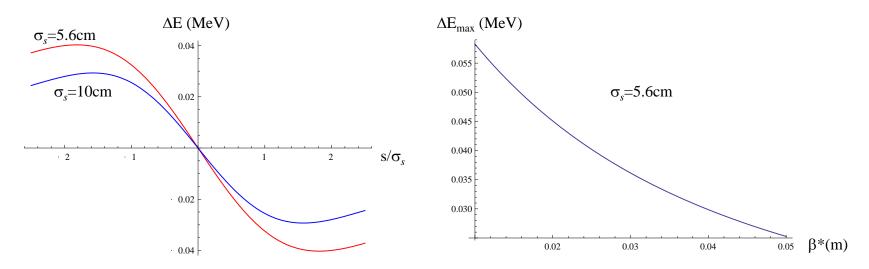
 \rightarrow low V_{RF} and/or high momentum compaction α_{c} is required.

But V_{RF} should be high enough to minimize the effect of strong self-fields (~50kV for $Z_{II}/n\sim0.1\Omega$ in the GHz range*). For V_{RF} =100kV and f_{RF} =200MHz

$$\alpha_{c} = \frac{2\pi heV_{RF}\cos\varphi_{s}}{E} \left(\frac{\beta_{\parallel}}{C}\right)^{2} \approx 0.08\cos\varphi_{s}$$

Another way to look at this is to use the Keil-Schnell criterion (+ Boussard conjecture)

$$\left|\frac{Z_{\parallel}}{n}\right| \leq \frac{2\pi E \mid \alpha_c \mid}{eI_{peak}} \left(\frac{\sigma_E}{E}\right)^2 \rightarrow \mid \alpha_c \mid \geq 0.13$$


Obviously we have to limit Z_{\parallel}/n to well below 0.1 Ω and make α_c as large as possible (I set the goal at $\alpha_c > 0.05$)

*) Characteristic bunch frequency is c/4 σ_s ~1GHz whereas the rotational frequency is ~1MHz \rightarrow n~10³

Collision with a thin slice of Ns particles leads to energy change

$$\Delta E = \frac{eN_s}{2\beta_{\perp}} \frac{d\beta_{\perp}}{ds} \bigg|_{\text{collision point}}, \quad \Delta E_{\text{max}} = \frac{eN_s}{2\beta^*} \sim 58 \text{kV} \text{ for } N_s = 2 \cdot 10^{12} \text{ and } \beta^* = 2.5 \text{cm}$$

For $\alpha_c > 0$ the effect is defocusing (good), but it is strongly nonlinear (not so good). The finite bunch length reduces it somewhat:

Thanks to $\alpha_c > 0$, $\beta^*=1.5$ cm is probably still admissible

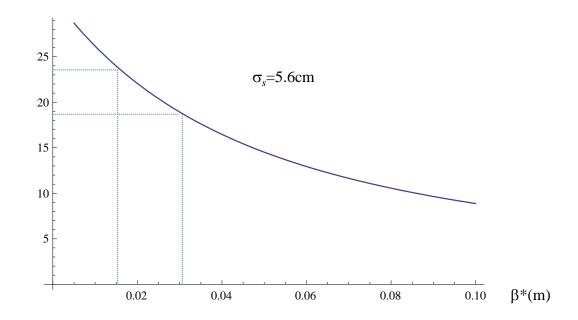
MAP Weekly Meeting, 11/09/2012

Thanks to small $\sigma_E/E \sim 3.10^{-5}$ the chromaticity by itself is not a problem (though may be such for larger σ_E/E needed for initial scan).

But there are other effects which require chromaticity correction, most notably the path length dependence on betatron amplitude which translates into additional energy spread:

$$\frac{\Delta E}{E} \approx -\frac{1}{2\alpha_c R} (Q'_x I_x + Q'_y I_y) \rightarrow \left\langle \frac{\Delta E}{E} \right\rangle_{r.m.s.} = \frac{|Q'_\perp| \varepsilon_\perp}{\sqrt{2\alpha_c R}}, \quad \varepsilon_x = \left\langle I_x \right\rangle$$

With uncorrected $\text{Q'}_{\perp}\text{--}$ -100 and $\alpha_{c}\text{=-}0.05$ we would have


$$\left\langle \frac{\Delta E}{E} \right\rangle \sim 2 \cdot 10^{-2}$$

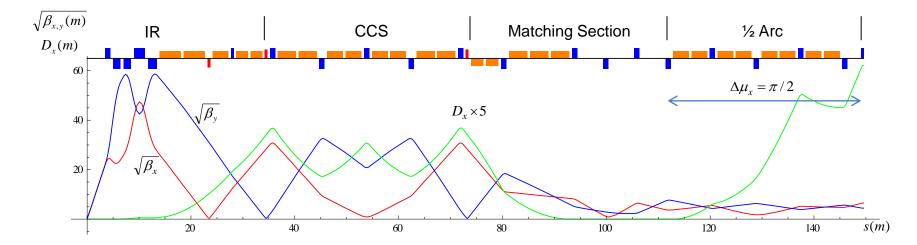
 \rightarrow we need chromaticity correction! - But in a way that will not compromise the dynamic aperture.

Chromaticity correction is also needed from operational considerations.

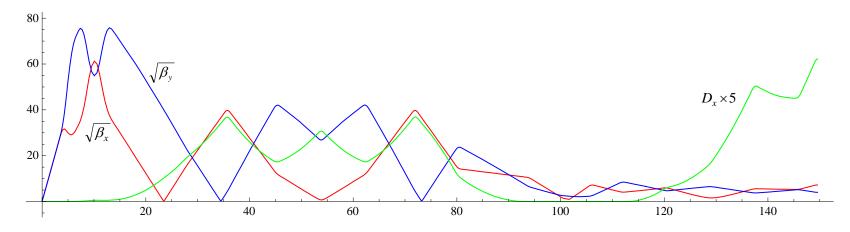
Optimum β*

Hourglass Factor / $\beta^*(m)$

At $\beta^*=2.5$ cm the hourglass factor = 0.5, the gain in luminosity with $\beta^* \rightarrow 1.5$ cm is just 17% - still can be worthwhile.

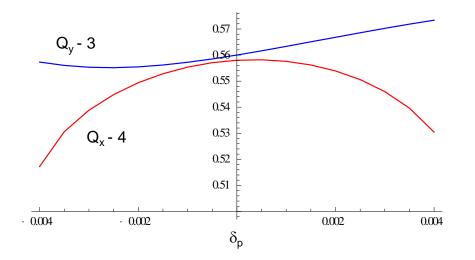

The main limitation on β^* is imposed by aperture of the FF quads, our engineers are confident that the pole tip field of 10T is possible with ID=50cm, but requires additional R&D.

Quadruplet Final Focus


 $\beta^*=2.5$ cm, $\epsilon_{\perp N}=0.3$ mm a(cm)Q3 Q4 Q2(1) Q2(2) **B**1 25 _L 20 $5\sigma_y$ Q1 3.5m 15 $5\sigma_x$ 10 5 s(m)10 15 5 **Q1 Q2 Q3 Q4** aperture (cm) 27 45 45 45 gradient (T/m) 74 -36 44 -25 dipole field (T) 0 2 0 2 length (m) 1.0 2.05 1.7 1.4

Obviously the design can be improved: βy_max can be reduced to match βx_max

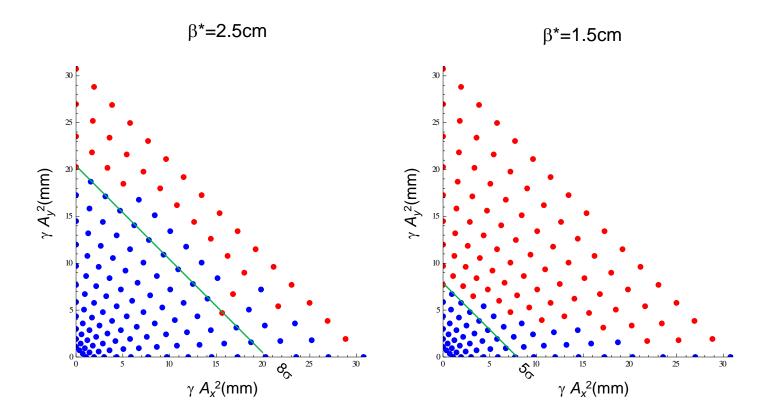
β*=2.5cm



 β^* can be increased up to 10 cm by changing quad gradients in the matching section

HF Ring Design – Y.Alexahin,

MAP Weekly Meeting, 11/09/2012


β*=1.5cm

No attempt to correct nonlinear chromaticity has been made (should not be a problem). Acceptance at $\beta^*=2.5$ cm exceeds ±0.5%

N.B. Chromaticity computed with MAD8 TWISS command are completely wrong!

Dynamic Aperture

2048 turns Dynamic Aperture (DA) computed with MAD8 LIE4 method. Octupole correctors were used to correct vertical detuning with amplitude. In both cases the DA significantly exceeds the physical aperture (5σ and 4σ respectively)

Parameter	Unit	Value
Circumference, C	m	299
β*	cm	2.5 (1.5-10)
Momentum compaction, α_p	-	0.0793
Betatron tunes	-	4.56 / 3.56
Bare lattice chromaticity	-	-124 / -197
Synchrotron tune (100kV, 200MHz)	-	0.002
Number of muons / bunch	10 ¹²	$1.5 \rightarrow 2$
Normalized emittance, $\epsilon_{\perp N}$	π·mm·rad	0.3
Long. emittance, $\epsilon_{\parallel N}$	π·mm·rad	1.0
Beam energy spread	%	0.003
Bunch length, σ_s	cm	5.64
Beam-beam parameter	-	$0.0054 \rightarrow 0.0072$
Repetition rate	Hz	$10 \rightarrow 30$
Average luminosity	10 ³¹ /cm ² /s	0.46 ightarrow 2.5