Developments in Asia

(Only cover experiments based in Asia)

Masashi Yokoyama Department of Physics, The University of Tokyo

Intensity Frontier Neutrino subgroup meeting Mar. 6-7 2013, SLAC

India-based Neutrino Observatory (INO)

- An underground laboratory with ~1.2 km all-round rock cover accessed through a 1.9 km long tunnel. A large and several smaller caverns to facilitate many experimental programmes
- Frontline neutrino issues e.g., mass parameters and other properties, will be explored in a manner complementary to ongoing efforts worldwide.
- The detector will be a magnetised iron calorimeter (ICAL) with magnetised iron plates interleaved with RPC detectors. Total weight will be 50 kton.
- ICAL detector, with its charge identification ability, will be able to address questions about the neutrino mixing parameter space specially the issue of *neutrino mass hierarchy*.
- Will support several experiments in Physics, Biology, Geology etc. when operational. Neutrino-less Double Beta Decay and Dark Matter Search experiments foreseen in the immediate future.
- Welcome international participation.

Current status

- Full size RPCs (2m X 2m) are now being fabricated not only in the lab but also by the Industry. Ready for large scale production.
 Construction of an Engineering module will start soon.
- Development & fabrication of various electronic modules for the INO-ICAL detector are advancing well.
- Two prototype detectors- one at TIFR and the 2nd one at VECC are running.
- Detailed Project Reports (DPR) for site infrastructure as well as for the magnet structure are ready.
- Obtained forest as well as environmental clearances for the INO project. Civil construction will start soon.
- TN govt. has handed over 66 acres of land to DAE for the construction of INO facilities at site. Additional 33 acres of land acquired at Madurai for the INO centre.
- INO graduate training program with strong emphasis on hands on training for detector development is running for the last three years.
- * INO-ICAL will have an important role specially due to the large value of θ_{13} announced recently.

2mX2m RPC Test Stand at TIFR

Daya Bay-II Experiment

DYB-II has been approved in China in Feb. 2013

Equivalent to CD1 of US DOE

- 20 kton LS detector
- $3\%/\sqrt{E}$ resolution
- Rich physics
 - ⇒ Mass hierarchy
 - ⇒ Precision measurement of 4 oscillation parameters to <1%</p>
 - ⇒ Supernovae neutrino
 - ⇒ Geoneutrino
 - ⇒ Sterile neutrino
 - ⇒ Atmospheric neutrinos
 - \Rightarrow Exotic searches

Talk by Y.F. Wang at ICFA seminar 2008...NuFact 2012; by J. Cao at Nutel 2009...NPB 2012 (ShenZhen); Paper by L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103,2008; PRD79:073007,2009

The reactors and possible sites

	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW

Projected Sensitivity

Taking into account Δm_{32}^2 from T2K

and Nova in the future:

	Current	DYB II
Δm_{12}^2	3%	0.6%
Δm_{23}^2	5%	0.6%
$sin^2\theta_{12}$	6%	0.7%
$sin^2\theta_{23}$	20%	N/A
$sin^2\theta_{13}$	14 %→ 4%	~ 15%

If Δm_{32}^2 at 1% precision, mass hierarchy could be determined to ~5 σ in 6 years. (core distribution and energy non-linearity may degrade it a little.

Will be more precise than CKM matrix elements !

Probing the unitarity of UPMNS to ~1% level

RENO-50 (2018~)

- Large θ_{12} neutrino oscillation effects at 50 km + 5kton liquid scintillator detector
- RENO can be used as near detectors. \rightarrow Precise (~0.3%) reactor neutrino fluxes
- Dedicated to $YG \rightarrow$ negligible contribution from other nuclear power plants.

Physics with RENO-50

- Precise measurement of θ_{12} and Δm_{21}^2

$\frac{\delta \sin^2 \theta_{12}}{12} \sim 1.0\% (l\sigma)$ in a year	$\frac{\delta \Delta m^2_{21}}{100} \sim 1.0\% (1\sigma)$ in 2~3 years
$\sin^2 \theta_{12} (\leftarrow 5.4\%)$	Δm^2_{21} ($\leftarrow 2.6\%$)

- Determination of mass hierarchy (sign of Δm_{31}^2 or Δm_{32}^2)
 - Challenging : good (2~3%) energy resolution & large (> 30 kton) detector
 - Add a 1000 ton detector at ~10 km (L: 300 m + 1.4 km + 10 km + 50 km)

Neutrino burst from a galactic supernova : ~1500 events @8 kpc

- Geo-neutrinos : ~ 300 geo-neutrinos for 5 years
- Solar neutrinos : with ultra low radioacitivity like Borexino
- Reactor physics : non-proliferation
- Detection of J-PARC beam (4MW) : ~100 events/year
- Search for neutrinoless double beta decay

RENO-50 vs. KamLAND

	Oscillation Reduction	Reactor Neutrino Flux	Detector Size	Syst. Error on v Flux	Error on sin²θ ₁₂
RENO-50 (50 km)	80%	13×6×φ ₀ [6 reactors]	5 kton	~ 0.3%	~1%
KamLAND (180 km)	40%	53×φ ₀ [53 reactors]	1 kton	3%	5.4%
Figure of Merit	×2	×1.5	×5	×10	
	(50 km / 180 km)² ≈ 13				

MC Simulation for RENO-50

Future projects in Japan

+ Continued running of Super-K,T2K(incl. anti-V run), ..

Hyper-Kamiokande

Compart ment Length 49.5m

Width 48m

Der-K

Total Length 247.5m (5Compartmen

Cavity (Lining)

Electrical Machinery Room

Access Tunnel

Hyper-KWG, arXiv:1109.3262 [hep-ex]

Letter of Intent:

Sep. 2011 The Hyper-Kamiokande Experiment — Detector Design and Physics Potential —

K. Abe,^{12, 14} T. Abe,¹⁰ H. Aihara,^{10, 14} Y. Fukuda,⁵ Y. Hayato,^{12, 14} K. Huang,⁴

A. K. Ichikawa,⁴ M. Ikeda,⁴ K. Inoue,^{8, 14} H. Ishino,⁷ Y. Itow,⁶ T. Kajita,^{13, 14} J. Kameda,^{12, 14}

Y. Kishimoto,^{12,14} M. Koga,^{8,14} Y. Koshio,^{12,14} K. P. Lee,¹³ A. Minamino,⁴ M. Miura,^{12,14}

S. Moriyama,^{12,14} M. Nakahata,^{12,14} K. Nakamura,^{2,14} T. Nakaya,^{4,14} S. Nakayama,^{12,14}

K. Nishijima,⁹ Y. Nishimura,¹² Y. Obayashi,^{12, 14} K. Okumura,¹³ M. Sakuda,⁷ H. Sekiya,^{12, 14}

M. Shiozawa,^{12, 14, *} A. T. Suzuki,³ Y. Suzuki,^{12, 14} A. Takeda,^{12, 14} Y. Takeuchi,^{3, 14}

H. K. M. Tanaka,¹¹ S. Tasaka,¹ T. Tomura,¹² M. R. Vagins,¹⁴ J. Wang,¹⁰ and M. Yokoyama^{10,14}

(Hyper-Kamiokande working group)

¹Gifu University, Department of Physics, Gifu, Gifu 501-1193, Japan

²High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan

³Kobe University, Department of Physics, Kobe, Hyogo 657-8501, Japan

⁴Kyoto University, Department of Physics, Kyoto, Kyoto 606-8502, Japan

⁵Miyagi University of Education, Department of Physics, Sendai, Miyagi 980-0845, Japan 17

Multi-purpose detector Hyper-Kamiokande

Super=K x50 of T2K for vCP

higher intensity v by upgraded J-PARC

or power

Goógle

J-PARC

© 2012 Cnes Spot Image © 2012 IL@abc.com © 2012 ZENRIN

J-PARC to Hyper-K LBL experiment: Ve candidate reconstructed energy distributions

2000-4000 signal events for each of v and v

Expected uncertainty of $\delta (I\sigma)^{\text{acc. v}}$

Mass hierarchy determination with atmospheric neutrinos

 3σ determination with <10 year observation (better sensitivity depending on the value of θ_{23}) atm V

atm V: θ_{23} octant and CPV

Complementary measurements to accelerator V

atm V

p decay

Search for nucleon decays

astro V

Neutrino astrophysics

Supernova burst neutrino

- ~250k events (Garactic center) / ~25 events (Andromeda)
- Reveal the detailed mechanism of supernova explosions with very large statistics sample

• Supernova relic neutrino

- Study the history of heavy element synthesis in the universe
- Precision measurements of solar neutrino
- Indirect WIMP Search

International Hyper-K meetings

First meeting: Aug. 23-24, 2012

http://indico.ipmu.jp/indico/conferenceTimeTable.py?confld=7

Second meeting: Jan. 14-15, 2013

http://indico.ipmu.jp/indico/conferenceTimeTable.py?confld=10

Hyper-K is completely open to the international community

~100 participants for each of two meetings (~half from abroad)

International working group was formed

Current members from Japan, Canada, Spain, Switzerland, Russia, UK, and US Next meeting: Jun. 21-22

R&D of photo sensor

- Hybrid Photodetecotr (HPD)
 - Photo cathode + avalanche diode
 - Goal: higher performance, less expensive than PMT
 - 8-in prototype test in water (200-ton water tank @ Kamioka)
 - 20-in prototype available soon
- 20-in PMT with improved dynode
- Higher QE 20" photocathode under development
- Finish R&D and be ready for mass production in a few years

8-inch HPD prototype

Other R&D topics

- Water system
- Readout electronics
- Calibration system
- Software development
- Physics potential
- Design of near detector(s)

 Progress within international working group (Japan, Canada, Spain, Switzerland, Russia, UK, US)

Target Schedule

Construction start —

assuming budget being approved from JPY2016

Data taking and science program duration: >15 years

Hyper-K in Japanese future strategy discussions

- Recommendation by HEP future projects committee (Feb.2012) <u>http://www.jahep.org/office/doc/201202_hecsubc_report.pdf</u>
 - Two large-scale projects recommended
 ILC
 - Large neutrino/nucleon decay detector (Hyper-K/LAr)
- Final draft of KEK roadmap (Jan. 2013) includes Hyper-K http://kds.kek.jp/getFile.py/access?sessionId=1&resId=0&materialId=0&confld=11728
- Cosmic ray physics community endorses Hyper-K as a next large-scale project
- ICRR future plan under discussion

Planning process in Japan

- In 2013-14, Science Council of Japan is going to update the Master Plan for large scale projects (for all fields of science).
 - Large neutrino/nucleon decay detector (Hyper-K/LAr) was listed on the previous versions of the *Master Plan* (2010/2011).
 - We are going to (re-)submit proposal this month with Hyper-K as the project.
 - 25-30 projects will be selected as priority.
- The Master Plan is expected to be an important input to the Japanese government.

Summary

- Exciting results in past one year from Asia
- •Even more exciting prospects with future plans in each country
 - •INO, Daya Bay II, RENO
 - Hyper-Kamiokande and many projects in Japan

Nov.11-13, 2013

KAV UNINSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

