

Neutrino Mass Hierarchy with Atmospheric Neutrinos and Neutrino Telescopes: PINGU, ORCA and INO

Snowmass Workshop, SLAC 6-8 March, 2013 Doug Cowen Penn State

This session: Mass Hierarchy with Atmospheric Neutrinos and WCDs - Ed Kearns Mass Hierarchy with Atmospheric Neutrinos and Neutrino Telescopes - Doug Cowen Mass Hierarchy with Accelerator Neutrino Experiments -Mass Hierarchy from Man-made Neutrinos (Future Projects) - Xin Qian

Neutrino Mass Hierarchy (NMH)

- •The NMH is a fundamental parameter of the neutrino sector: intrinsically interesting
 - \bullet Happily, the large θ_{13} gives us the ability to measure NMH via earth matter effects
- •For many experiments, the NMH is also degenerate with leptonic CPV
 - CPV is considerably *more* interesting
 - NMH can be viewed as a stepping stone to CPV
 - Important question: If we know the NMH, how do we optimize future experiments to focus purely on CPV?

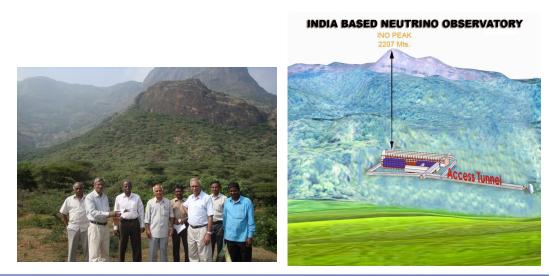
NMH and Atmospheric Neutrinos

- $\bullet \mbox{Few-GeV}$ atm. ν could provide sensitivity to NMH via matter effects
 - Resonant MSW and parametric oscillations for few-GeV earth-crossing neutrinos
 - NMH determines character of oscillations and it is different for ν vs $\overline{\nu}$
 - At these energies, use either
 - magnetic field to distinguish μ^{-} from μ^{+} event-by-event [INO]
 - $\sigma(v) \sim 2\sigma(\text{anti-}v)$ [PINGU, ORCA]
 - \bullet Degeneracy with δ_{CP} is minimal

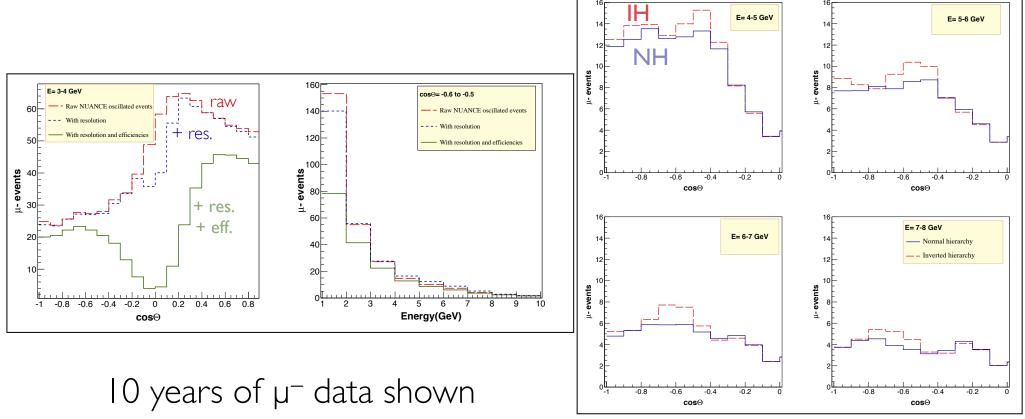
For Each Detector:

- •Design concept
- •Measurement principles
- •Reach, dependencies, complementarities
- •Timescale estimate
- Cost estimate

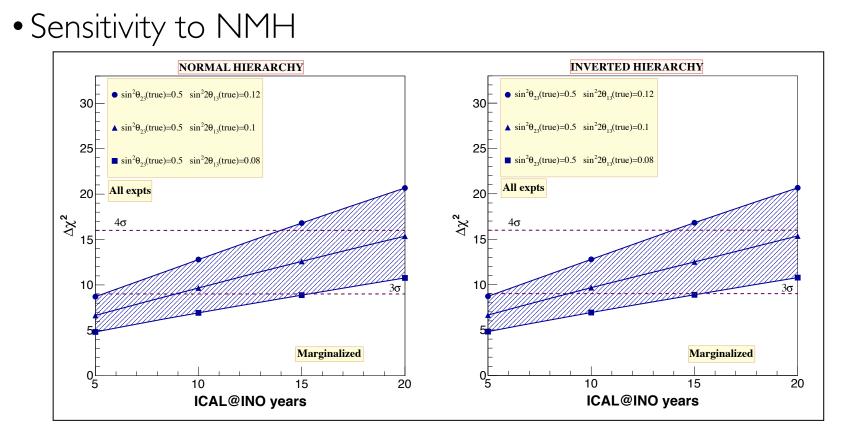
INO (India-based Neutrino Observatory)


- Design concept:
 - 50 kton magnetized iron calorimeter
 - I.3T field
 - 48.4m long × 16m wide × 14.4m high
 - I 50 layers 5.6cm Fe interleaved with 28,000
 2m x 2m glass Resistive Plate Chambers (RPCs)
 - Bury it all under a mountain in Southern India

Cosmic ray test stand



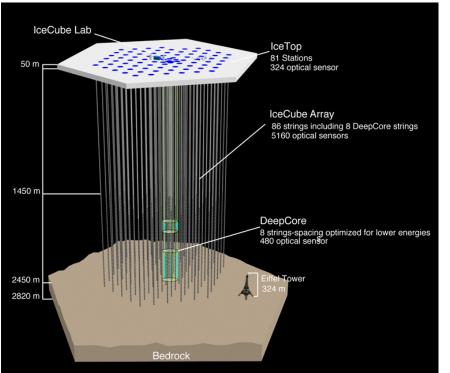
Prototype magnet



INO

•Measure energy and angle of μ^- and μ^+ , separately

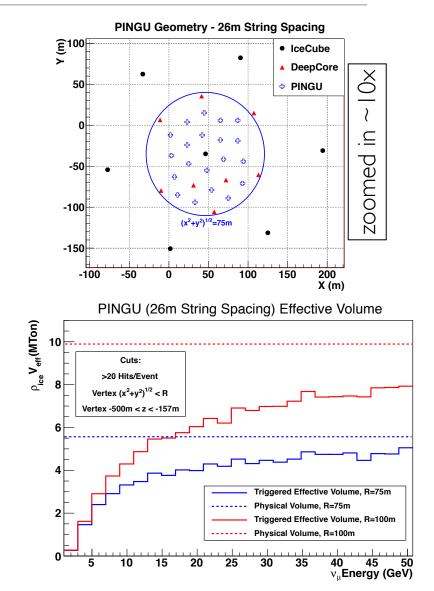
INO



- Start data taking 2017-2018
- 3σ separation in ~10 yrs in combination w/NOvA &T2K
- Cost: \$250M

PINGU (Precision IceCube Next Generation Upgrade)

- Design concept:
 - Add in-fill strings to IceCube/DeepCore array
 - further increase module density
 - current detector shown at right...
 - continue to exploit 2km depth and surrounding array as active cosmic ray muon veto
 - optimize and simplify IceCube module design for ${\sim}5~\text{GeV}$ E_v events, reduced cost
 - co-deploy new calibration devices tuned for lower E_{ν}
 - improve refrozen hole ice clarity
 - Goal: reach few GeV E_{ν} threshold

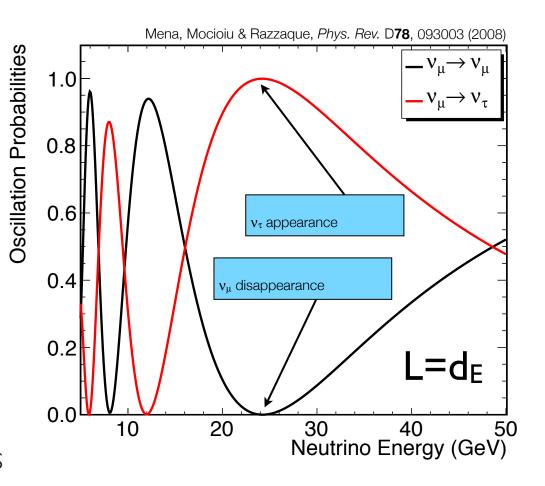


The current IceCube/DeepCore detector

PINGU (Precision IceCube Next Generation Upgrade)

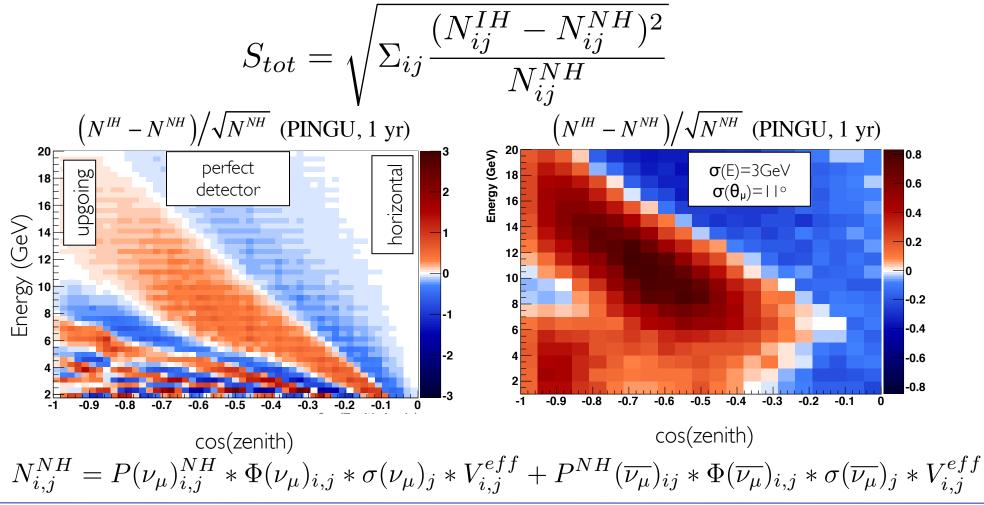
- Design concept:
 - Add in-fill strings to IceCube/DeepCore array
 - further increase module density
 - ...sample new geom. shown at right;V \sim few Mt
 - continue to exploit 2km depth and surrounding array as active cosmic ray muon veto
 - optimize and simplify IceCube module design for ~5 GeV E_v events, reduced cost
 - co-deploy new calibration devices tuned for lower E_{ν}
 - improve refrozen hole ice clarity
 - Goal: reach few GeV E_{ν} threshold

PINGU


- Measurement principle [1,2]
 - Exploit MSW & parametric oscillation effects for highstatistics sample of earthcrossing atmospheric neutrinos

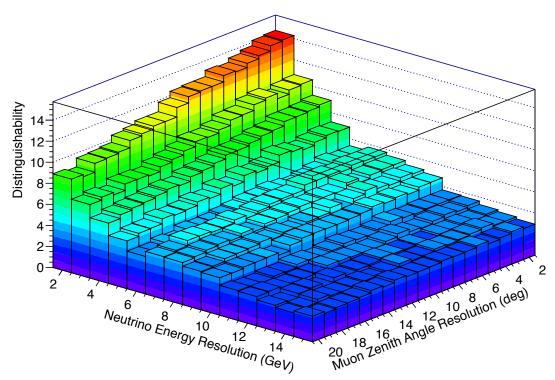
• Take advantage of

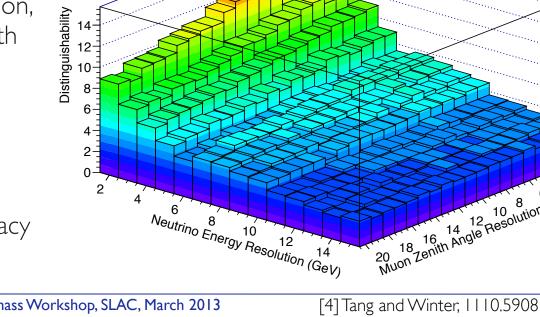
$$\sigma(v) \sim 2\sigma(\overline{v}) \& \phi(v) > \phi(\overline{v})$$


• Maybe use inelasticity, too? [3]

[1] Mena, Mocioiu, and Razzaque 0803.3044
[2] Akhmedov, Razzaque, and Smirnov 1205.7071
[3] Ribordy and Smirnov, 1303.0758

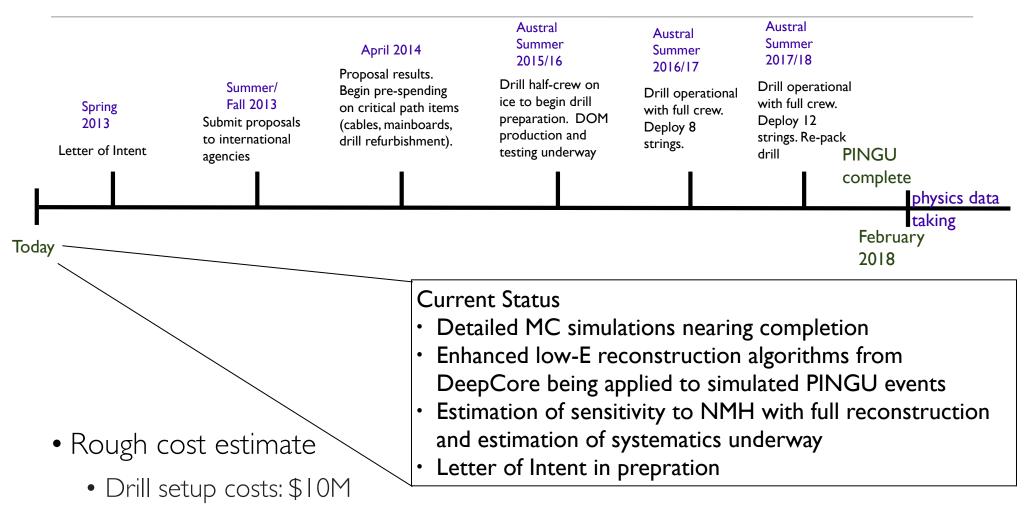
PINGU


•Following Ref. [2], define "distinguishability" as



PINGU

• Current status


- Actively working on reco. & geom. optimization to estimate σ 's from sim.
 - As a proxy for reco. efficiency, require at least 20 detected Cherenkov γ s
- Near-future work
 - Evaluate impact or mitigation of anticipated systematics (uncertainties in ice properties, module efficiencies, energy scale, angular reconstruction, cross sections, atm nu fluxes, earth profile, ...)
- Theoretical issues
 - δ_{CP} : small (but with a beam[4], PINGU might measure δ_{CP})
 - $\Delta(m_{31})^2$: non-negligible degeneracy with NMH, but manageable

Distinguishability for PINGU 26m Spacing - 1 Year Data Taking, 20 Hit Cut

PINGU: Timescale & Cost

- Hardware + deployment cost per string: \$1.25M
 - A 20-string in-fill would cost roughly \$35M, shared between NSF and European agencies

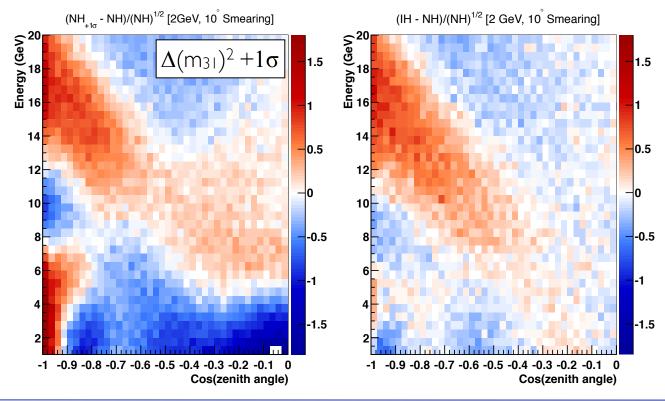
ORCA (Oscillation Research with Cosmics in the Abyss)

- Design:
 - deploy a dense array of KM3NeT modules ~4km underwater in Mediterranean
 - module prototype exists
 - engineering deployment tests for KM3NeT have been performed
- Measurement principle ~same as PINGU
 - greater depth reduces muon flux relative to PINGU by ~50x, but absence of surrounding array for active muon veto may be challenging
- Timescale and cost
 - In principle have funds already, but they're intended for UHE ν KM3NeT
 - would have to convince agencies to repurpose funds for ORCA
 - cost would be larger than for PINGU but would be partly "amortized" as KM3NeT prototyping
 - Timescale dependent on numerous unknowns regarding module design and detector deployment, but in principle similar to that of PINGU

Conclusions

- Atmospheric neutrino telescopes are the lucky beneficiaries of a known high θ_{13} and a prolific, free neutrino source
- With such generous friends, neutrino telescopes may be able to measure NMH
 - PINGU:
 - gratifyingly short time scale and modest cost
 - construction is straightforward and very low risk
 - now addressing reconstruction and systematics challenges
 - ORCA:
 - somewhat behind PINGU but may already have funding
 - INO:
 - can measure NMH but suffers from low statistics

The End

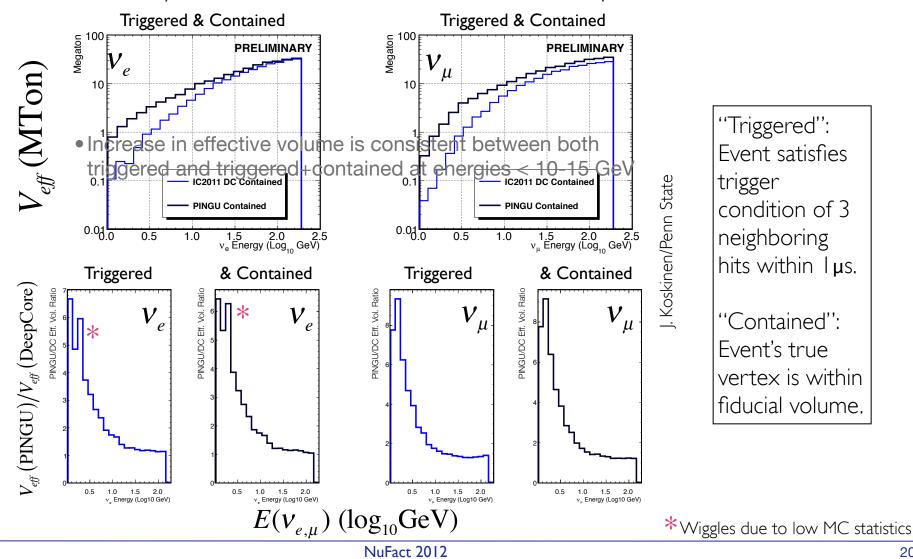

.not.(T2K or NOvA):

Existing & their upgrades Future atmospheric Future man-made

Expt. (A-Z)	v source	Method	Dataset for 3o:	Earliest Year for 3σ	-δ _{CP} range (NH)	Cost	Status	Comple- mentarity	Location
CHIPS	NuMI	WCD, ν _e app., 1% sin²2θ ₂₃	3+3	~2021	30-120°	\$120M	R&D	NOvA, T2K	Minnesota Mine Pits
Daya Bay II	Daya Bay Reactors	\overline{v}_e dis.	3	2023	All	?	R&D		China
GLADE	NuMI	LAr (5-10kt)	3+3	NOvA+10	30-140°	\$1-200M	R&D	NOvA, T2K	Ash River (NOvA)
Super-K, Hyper-K	Atm.	WCD v _e ,v _e app.	2-10 yrs	~2022	All	\$1B	R&D	JPARC	Japan
INO	Atm.	Fe Calorim. v _µ vs.v _µ dis.	~15 yrs	~2030	All	\$250M	Under construction	NOvA, T2K, DB, RENO	India
Large WCD	NuMI, Atm.	WCD	~1 yr, > ~6 yrs	?	?, All	\$500M	R&D (LBNE)	LBNE LAr TPC	Sanford
LBNE	LBNE beam	LAr	5+5	~2025	-180-36°, 126-180°	\$1B	Approved	NOvA, T2K	Sanford
MINOS+	NuMI	MINOS	NOvA	N/A	N/A	?	R&D	NOvA, T2K	Soudan
ORCA (KM3NeT)	Atm.	WCD v _µ dis. (ocean)	~few yrs?	~2021	All	?	R&D		Mediter- ranean
PINGU (IceCube)	Atm.	WCD v _µ dis. (ice)	2-3 yrs	2021	All	~\$50M	R&D		Antarctica
RENO-50	Yonggwang	\overline{v}_e dis.	?	?	All	?	R&D		South Korea

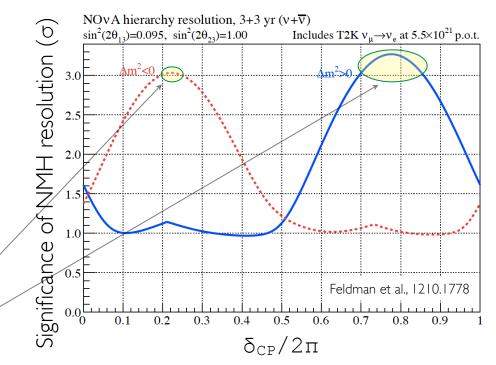
PINGU: $\Delta(m_{31})^2$

- Uncertainty in $\Delta(m_{31})^2$ creates some degeneracy in the distinguishability metric
 - Plots have perfect event ID and 100% selection efficiency, but include energy and angle smearing


Neutrino Hierarchy and Parametric Resonances

- Parametric resonances can occur as neutrinos cross regions of distinct density
 - Flavor transitions enhanced due to matter-induced modifications in oscillation phase
 - (MSW occurs through modifications in neutrino mixing <u>angle</u>)
 - If travel through periodically varying density, transition probabilities can add up and become large, but generally speaking need lots of periods
- Relevant Exception: For matter densities close to MSW resonance densities, can have parametric enhancement of oscillations with a very small number of periods
 - This is the case for Earth and neutrinos at \sim 5 GeV(!!) and
 - The character of the effect depends strongly on the hierarchy. 🙂

E. Kh. Akhmedov, Pramana 54:47-63,2000 or hep-ph/9907435


PINGU Effective Volumes

• V_{eff} increased by ~8x at ~1 GeV relative to DeepCore

Existing* NMH Experiments

- •T2K (running) and NOvA (fully constructed early 2014)
 - \bullet search for ν_e appearance over long baselines
 - L_{T2K} = 295km; L_{NOvA} = 810km
 - situated off-axis to get narrow
 E_v peak
 - $E_{T2K} = \sim 0.6 \text{ GeV};$ $E_{NOVA} = \sim 2 \text{ GeV}$
- Sensitivity to NMH: Limited
 - Can only determine NMH to 3σ when $\delta_{CP} \sim \pm 90^{\circ}$.

*Existing = running or under construction