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nuSTORM - v Cross-section measurements

» The next generation of LB experiments face some significant challenges

> CP asymmetry decreases with increasing sin?20,
> Well.... I should say that the CP asymmetry IS small

> Flux and cross-sections (and nuclear effects) must be known to much better than 5%
» Gaining a better understanding of x-sections may be crucial to these future
experiments
> The energy range of interest is roughly 1-3 GeV
> W storage ri.ngs provid;: the oply way to get large s;tmple of v, and v, interactions
(both neutrino and anti-neutrino) in a single experiment and:

> With u decay ring instrumentation we anticipate getting the flux uncertainty below 1%
and

>  With a well designed suite of near detectors, x-sections can be measured to the few %
level or less.

> Great deal of ND work for LBNE, LBNO & IDS-NF

» Reach an overall systematic uncertainly that is very difficult (impossible?) in
conventional v beams
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nuSTORM - v Cross-section measurements

» Cross-section measurements

> W storage r'ng presents only way to measure v, & v, &
( ) X-sections 1n same experiment

> Supports future long-baseline experiments
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* Important to note that with 6,
large, the asymmetry you’re trying
to measure is small, so:

— Need to know underlying v/
vbar flux & o more precisely

— Bkg content & uncertainties start
to become more important
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A detector for v interaction physics
One Example

ECAL

> HiResMv Sanijib Mishra

> Evolution of the NOMAD
experiment

» One of the concepts
considered for ND for LBNE

» Studied as ND for NF
» Capabilities
» High resolution spectrometer
» Low density
> PID & tracking
>

Nuclear targets

Dipole Magnet
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v Interaction Physics

A partial sampling

Vv, and v -bar x-section measurements
n¥ production in v interactions

> Coherent and quasi-exclusive single 7° production
Charged m & K production

» Coherent and quasi-exclusive single w* production
Multi-nucleon final states
v-e scattering
v-Nucleon neutral current scattering

» Measurement of NC to CC ratio
Charged and neutral current processes

> Measurement of v, induced resonance production
Nuclear effects
Semi-exclusive & exclusive processes

> Measurement of K, A & A-bar production

New physics & exotic processes
> Testofv, - v, universality
> Heavyv
» eV-scale pseudo-scalar penetrating particles
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The vSTORM Neutrino Beam
W v, +v, +e

ut > v, +v, +e

¢ A high-intensity source of v, events for experiments.
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3.8 GeV u* stored, 150m straight, flux at 100m
(thanks to Sam Zeller and Chris Tunnell!)
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Channel
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N, evts
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v, Event Fractions in vSTORM

¢ v_produced by 3.8 GeV pu* beam.
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Why are v,

Cross Sections Important?

¢ v, A — scattering results are interesting on their own.

¢ Recent determination of large 0,5 has opened up possibilities of

v Determining v mass ordering.

v Searching for CP-violation in the v sector.

¢ To be sensitive to these effects, current/near-future long-baseline

experiments will be looking for v, to v,
and Vv, to v, oscillations over a range of
energies.

¢ These will no longer be only “counting”
experiments but rather will depend on
observing distortions in the far detectors
neutrino energy spectrum in both neutrino

and anti-neutrino samplé#sge G. Morfin - Fermilab
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Why are v, and v,
Cross Sections Important?

¢ Large 0,; means we could have

reasonable statistics.

However, as the now-well-known

plot at right suggests, the

asymmetry between v andV will

|P-P|/|P+P|

be small and the goal of
constraining the range of 6 will
demand minimal systematic
eIToTS.

One of these systematics will be
our knowledge of v, and v, cross

sections in the relevant enosgy cange - Fermilab
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What are the Differences o,,,(E) and o,(E)?

Quasi-elastic Scattering
Day-McFarland study: Phys.Rev. D86 (2012) 053003

¢ Sources of possible differences: form factor uncertainties entering through lepton mass
alterations - much more subtle:
v Form factor contributions — both Axial and Pseudoscalar

v Second class current contributions to vector and axial-vector form factors

¢ Possible contribution to CP uncertainties: effect on the FF could be different for v and v
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Neutrino Factory Near Detector(s)

> e Decay straight . O .
E, =25 GeV £80 MeV z C | D z z 3
. . Z 18 Circumference: 1609 m W = > [}
Straight section length = 600 m S @ 5 :
Muon angular spread 0.5 mrad = .. e o Ve
’ l< s=600 m | d=1000m |
| ‘ d=80 m

755 m

Neutrino Factory Near Detector aims: Can we achieve this
by using neutrino
scattering off
electrons?

¢ Measurement of neutrino flux with ~1%
precision and extrapolation to the Far Detector;

¢ Measurement of charm production (main
background to oscillation signal);

¢ Cross-section measurements: DIS, QEL, RES;
¢ Search for Non Standard Interactions (NSI).
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Why do we Need a NF Near Detector?

¢ We have learned that near detectors are essential for neutrino
oscillation physics:
v Measurement of neutrino flux and extrapolation to Far Detector
¥ Measurement of charm (main background to oscillation signal)

v Cross-section measurements: DIS, QEL, RES scattering

¢ Other measurements with Near Detector
v Fundamental electroweak and QCD physics (ie PDFs, sin 6)
v Search for Non Standard Interactions (NSI) from taus
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Near Detector Physics Goals

¢ The near detectors of the Neutrino Factory will offer a unique
opportunity to search for non-standard matter effects.

¢ construction of a detector sensitive to ¥V , to look for processes
suchas U —eV ,V ,orV ,+N— T +Xfor & =e, U.

¢ The quasielastic neutrino-electron scattering (Inverse Muon Decay)
1s suitable for the measurement of the neutrino flux because its

absolute cross-section can be calculated theoretically with enough
confidence (Threshold about 11 GeV).
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Near Detector Physics Goals

¢ Electroweak Physics Neutrinos are a natural probe for the
investigation of electroweak physics (sin? 6 y):
v Deep Inelastic Scattering off quarks inside nucleons: ¥ N — v X;
v Elastic Scattering off electrons: v e— — Ve—

v Elastic Scattering off protons: Vp— vV p
¢ Structure of the Nucleon

v Measurement of Form Factors and Structure Functions
v QCD Analysis of Parton Distribution Functions

v d/u Parton Distribution Functions at Large x

v Non-perturbative Contributions and High Twists

¥ Quark-hadron Duality

¥ Generalized Parton Distributions
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Concept of NF Near Detector Design

Near Detector design will probably have three sections:

— High resolution detector (SciF1 tracker or HiRes?) for
neutrino flux measurement

— Mini-MIND detector for flux and muon measurement
— Vertex detector for charm/tau measurement at the front.
~20 m

=3m
X\

A

v beam

»
>

3m

Vertex
Detector

v

Mini-MIND B>1T ™

High Res Detector



Option A: Scintillating Fiber Tracker

¢ Simulation near detector for Neutrino Factory (Tsenov/Kharadzhov)
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Option B: High Resolution Straw-tube

Magnetized Detector

¢ HighRes — Mishra/Petti
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High Resolution Near Detector

¢ NOMAD-Ilike resolution in HiRes detector allows to:

v Measure absolute flux using
V - e elastic scattering —

v Measure quasi-elastic scattering

v NC vs CC events (NOMAD
with 90% purity)

v Coherent 7t

v Comparison sin? 8 y, from DIS
and e = Ve

v 77 different physics topics!
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Option C: Tau/Charm Detector

¢ We want near detector also to study:

v Charm: to measure main background for oscillation search

v Tau: to search for NSI at source and detection

¢ Can achieve this using a silicon vertex detector

v But also looking at feasibility of replaceable emulsion target

Boron c-lrbidc-silicon targel

I
Front Dipole Magnet TRD
(alorimctcr\ B=0A4T

Neutrino \ l”'
Beam N 1
irlarein /> ‘
S !
Veto Planes Trigger Planes
Electromagnetic
1 meter Driflt Chinnbers (f;;iri‘::::gu -
|.._.

\iuon
(‘Iu-ll,uer\
Modules Preshower

Hadronic
Calorimueter

Vel Scintiators

1 Mo Cartids Yargees (rotei #5 K50

= =l a—a = md s = a s =i =l

5 Luyers of Sificor

e S e S BT S e

Taagor Scintarce:

20



We are back to where we started: v — H/ D Scattering

At least we would know the (almost for n) bare nucleon cross sections
that could then be modified for within-nucleus effects

/voés -, bod

g =
OV,(D*/V ke

farg efs

Number of neutrin

(flux) Reconstruction efficiency

Number of nuclei
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Backup
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Can we Actually MEASURE these Differences
in the 0.5 — 4 GeV region

VvSTORM Neutrinos from Stored Muons

¢ High-Precision v interaction physics program.
v The vSTORM beam will provide a
very well-known (0 ¢(E) = 1%) beam

of v and v.

Vv v, and v, cross-section measurements.

Neutrino Beam

Muon Decay
Ring

94 m

\

v v, and T/M Cross-section measurements
¢ Address the large Am? oscillation regime, mak

major contribution to the study of sterile neutri

é] Target
@

v Either allow for precision study (in many
channels), if they exist in this regime.
v Or greatly expand the dis-allowed region.
¢ Provide a u decay ring test demonstration and p beam diagnostics test bed.
¢ Provide a precisely understood v beam for detector studies.

¢ Change the conception of themguinefacteryiab 23



