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`Measuring the Neutrino Mass Scale 

Cosmology

0υββ

Direct β decay
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`Beta Decay Review

Aseev et al. Phys. Rev D 84 112003 (2011)Present Limit mν< 2eV

Beta decay spectrum enpoint is sensitive to neutrino mass
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`Challenges in Beta Decay 
Measurements

Only 1 in 1013 decays are useful (for Tritium)

Need to measure 10's of keV energies with eV resolution

Excitable molecular states can modify electron energy 
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`KATRIN as an Example

P. J. Doe

Electrons from Tritium decay are filtered electrostatically and counted

Presently under construction, expected final mν sensitivity of 0.2 eV

Cannot be scaled up sensibly any further
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`Ideas for More Sensitive 
Measurements

N. Steinbrink, Thesis, Munster 2012

B. Monreal and J Formaggio, PRD 80:051301 2009

Upgrade Katrin with Time-of-Flight

187Re Bolometer – MARE

163Ho Bolomoter – ECHO

New Spectrometer: Project 8

L. Gastaldo et al, arxiv:1206.5647

Gatti et al. MARE proposal, 2006
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`Cyclotron Motion

f cyc= ×B
me

me+KE
27.922 GHz

magnetic field (T) electron mass electron energy

An electron's cyclotron frequency tells us its energy

Frequency can be measured very accurately

B
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`Trapping Electrons

For an energy resolution of 1 eV in a field of 1 telsa, the frequency 
resolution needed is 50 kHz, and the electron must be observed 
for 20 μs.

A free electron with a pitch of 1 degree will travel 35 meters in 
this time

The electrons must be contained

Electrostatic traps will alter electron energy

Magnetic traps will cause nontrivial motion
cyclotron magnetron

axial

B
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`Cyclotron Power Collection

An 18 keV electron in a 1 T field emits 1 fW

A 300K blackbody emits 0.2 fW in a 50 kHz bandwidth 

The vast majority of the power must be collected

surround volume with antennas

couple motion to a waveguide
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`Project 8

University of Washington
PNNL

MIT & Haystack Observatory
UC Santa Barbara

NRAO
Caltech

Goal:
Develop cyclotron 
radiation technology for 
the next generation tritium 
beta decay experiment
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`The Plan

1)Demonstrate we can use cyclotron radiation to 
measure the energy of a radioactive decay

2)Demonstrate we have the sensitivity necessary 
to make a tritium measurement

3)Scale the system to the necessary volume
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`Prototype Goals

● Refine analysis of cyclotron RF signal

● Identify potential backgrounds to a Tritium measurement

Use cyclotron radiation to measure electron 
energy of 83mKr decay
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`Prototype Overall Design

Main Magnet

83mKr
Gas System

Waveguide Detector

Calibration Signal

RF Receiver

Part of the UW P8 prototype team
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`Waveguide Detector

Trap
Coil

2 inches
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`Gas System

Energy
C

ou
nt

s

83m Kr 30.2 keV
gamma

Challenges

Containment pressure > 10-6 torr ruins 
trapping time

Target Kr activity density 1 Bq/mm3

Below 110K, Kr source freezes out

Minimize system volume

Kr Spectrum on PIPS detector shows active 
source in waveguide trap

Gas system attached to 
insert
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`RF System

2 channels
100 MHz Bandwidth
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`Magnetic Field System
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Hall probe indicates field 
uniform to 1 in 103

ESR will measure to 1 in 
105
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`Expected Signals and Backgrounds

split by 
axial frequency
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Signal Simulation
Power vs Time, Frequency

simulation

simulation

Trap motion causes sidebands
First set of sidebands must be measured
for full energy resolution

Initial analysis focuses on 
locating central peak
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`Prototype Status

● Gas source constructed, functional
● Magnet Field Mapped
● Insert assembled, installed
● RF system characterized

Done

● ESR Field Measurement
● Identification of Electron Signal

Underway
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`Scaling Challenges

What do we have to solve to scale from a small prototype to a 
neutrino mass experiment?

Increase active volume to ~10 m3

Handle 1 to 1013 useful to useless event rate
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`Increasing Volume

Lower Frequency Resonant 
Structures

Multiantenna Instrumented 
Volumes

ADMX test cavity

VLA (source NRAO/AUI)

Resonant power enhancement
Natural Filter
Power loss with scaling

Large volumes
Event reconstruction
Many channels, intereferometry is hard

VS
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`Handling Event Rate

Events well separated in 
frequency space

Low energy electrons emit less 
power

Monte Carlo showing combined 
spectra of 105 events from tritium 
distribution + 1 endpoint event

Current estimation ~ 1 Ci per 
channel to significantly affect 
noise level

However, highly dependent on 
design parameters

Electron energy identification key design issue

Monreal & Formaggio, Phys. Rev D 80, 051301(R) (2009)
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`

So what will Project 8 full neutrino 
mass experiment look like?

(we're working on that)
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`Beyond Project 8

Can we use an atomic T source?

Molecular effects will soon become the dominant 
uncertainty for β decay experiments
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`Beyond Beyond – Relic Neutrinos

*See A. Kaboth, J. Formaggio, and B. Monreal Phys Rev. D 82 062001

1 MCi of Tritium needed

8 orders of magnitude 
beyond current capability*

β decay is sensitive to 
relic neutrinos
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`Conclusions

Cyclotron radiation frequency measurement is a 
promising idea for neutrino mass beta 

spectrometers

A demonstration experiment is underway

As we build the prototype, we refine our ideas 
about a full scale neutrino mass experiment
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`Backup Slides Follow
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`Increasing SNR

Lesson from prototype: physical temperature != noise temperature
waveguide does not contribute significantly to noise temperature

Resonant structures enhance Signal

Move to quantum limited amplifiers

Interferometry decreases noise
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`Receiver
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`Sources of Uncertainty

* KATRIN Budget from H. Robertson

KATRIN's uncertainty budget*
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