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Why scintillator detectors?

They are really good at being big!
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Can we do something

better with Liquid
Scintillator detectors?




Can we reconstruct the beta direction?
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New physics
could show up in
this distribution!
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The Cerenkov light is still there...

Cerenkov Photons per nm
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For KamLAND scintillator; this 1s 60 (10) photons per MeV
above 400nm below 400nm the light is absorbed and
reemitted as scintillation light.



VWhat are the handles In
a scintillator detector?
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Geant4 simulation

Style Aztions  Hiscellony  Special

* Simplified R=6.om
spherical geometry.

* Simulating single 5SMeV
electrons.

e Current KamLAND
scintillator and PMTs.

e Can we pick out the
Cerenkov signal!

Red arrow: z-axis

From: Christoph Aberle



entries per bin

Results for 100 e- events:
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Absorption of all photons below 360 nm.

Direction Cerenkov light more
important at longer wavelengths.



entries per bin

As expected Cerenkoyv light is directed forward...
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and the Cerenkov light arrives earlier...

entries per bin
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Note: 3ns transit time spread of
KamLAND PMTs is not great.



Now with a 35ns cut we can pull out
a directional signal...
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Event by event is going to be difficult, unless...



We have nearly perfect timing...
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Much better directional distribution...
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and even event by event looks possible.



So the timing and
photocathode coverage
requirements point to
something like the LAPPD
(higher quantum efficiency
would be nice too).



S0 new photodetectors
can be used to tune all 3.
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But can we do anything to
the step before?

Physics —> Light ——> PMTs




Quantum Dot Doped

Scintillator




What are quantum dots?




What are Quantum Dots?

Quantum Dots are semiconducting nanocrystals.

A shell of organic molecules is used to suspend them in an
organic solvent (toluene) or water.

Common materials are CdS, CdSe, Cdle...




Quantum Dot Materials Overlap with Candidate Isotopes!

Isotope Endpoint Abundance

%Ca 4271 MeV 0.187%

EUNF 3.367 MeV 5.6%

%7 3.350 MeV 2.8%

100Mg 3.034 MeV 9.6%

825e 2.995 MeV 9.2%
< T6Cd 2.802 MeV 7.5% —
— 307e 2.533 MeV 34.5% —

36)e 2479 MeV 8.9%

76Ge 2.039 MeV 7.8%

128Te 0.868 MeV 31.7%




Quantum dots provide the

chemistry for suspending
isotope in scintillator.




Why are they so popular?

Because of their small size, their electrical and optical properties
are more similar to atoms than bulk semiconductors.

In fact, the optical properties of quantum dots with
diameter <|0nm is completely determined by their size.

Their size I1s easily regulated during their synthesis.
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Example CdS Quantum Dot Spectra:

They absorb all light shorter than 400nm and re-emit it in a
narrow resonance around this wavelength.
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surface states which can be
eliminated with a second shell.



My scintillator is toluene with PPO
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Adding quantum dots will hopefully tune
and narrow the peak of this curve.
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Let’s start with some basic measurements!



First spectrometer data with
excitation with 280nm LED.

Samples are:
20mL toluene + 5 g/l PPO + .25 g/l quantum dots.



How much light?
Excite the scintillator with a 280nm LED.
_ PMT Peak Sensrtivity
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These dot have a 20% quantum efficiency, state of the art is > 80%.



How much light?
Excite the scintillator with a 280nm LED.
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Do Quantum Dots Age?

One of the NSF reviewers asked if this was an issue.
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No evidence for aging.
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The bigger issue for us seems to be batch to batch variations.
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20mL

- e
90G-
B=1MeV

> o

| GS/s

> waveform digrtizer.

Dark Box

3
PMT Setup

mple Two




Does the scintillator still scintillate?
Study the scintillator with a ?°Sr beta source.
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Do quantum dots change the timing
characteristics of the scintillator?
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The answer Is no, though the quantum dot scintillator
seems to have a slightly larger late light component.



Fitting to a three exponential model + PMT response:
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Tol + PPO | 0.94+0.01 | 1.73£0.03 | 0.08+£0.01 | 5.7+0.5 | 0.004+0.001 | 43 23.4
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Quantum dots allow you
unprecedented control over the

wavelength response of your
metal-doped scintillator.




So this is the idea...

Better
Scintillator

Better
Photo-Detectors
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Next Steps: Ve
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Last Spring

IL Detector - Now

e More quality control of the dots before using.
e Nitrogen purging for better light yield

* |arger quantum quantrties

e Attenuation length measurements



Next Steps: Ve
. .

Im?3 Detector

e Make use of knowledge from |L detector
* Hopefully, experiment with new photodetectors.
e Make measurement of two neutrino double beta decay in ''*Cd.



Recall you can have V
Two Neutrino ®
Double Beta Decay:

Nucleus Z > ' ' > Nucleus Z+2

Nuclear Process

With [0g of 'eCd, | expect 1000 events in 6 months.



Next Steps:
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Staged refurbishment
of KamLAND between
2015-2020.



Next Steps:

We are
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The End




Basic Principle of
Neutrino Detectors

Physics —> Light ——> PMTs




Typical PMT Detection Efficiency:
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Tune Scintillator Emmission:

Nuclear Instruments and Methods in Physics Research A 440 (2000) 360 } 371
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Fig. 1. PC + PPO (1.5 g/l) emission spectrum.

Example is Borexino Scintillator.



