

Broadband Parametric Amplifiers for Dark Matter Searches and QIS

Dylan J Temples, Fermilab Daniel Bowring (FNAL), Sunil Golwala (Caltech) 4 October 2023 -- BREAD Collaboration Meeting

Particle physicists developing qubits and quantum sensors for low-threshold particle detection

QSC@FNAL: Aaron Chou Lauren Hsu Daniel Baxter Rakshya Khatiwada **Daniel Bowring** Gustavo Cancelo Sho Uemura Sami Lewis **Dylan Temples** Sara Sussman Kester Anyang Israel Hernandez Jialin Yu Stella Dang Matthew Hollister Chris James

Northwestern: Enectali Figueroa Grace Bartrud Shilin Ray

Caltech:

Sunil Golwala Karthik Ramanathan Osmond Wen Taylor Aralis Brandon Sandoval

SLAC: Noah Kurinsky Kelly Stifter Hannah Magoon Sukie Kevane

QSC@Purdue Alex Ma Botao Du

UW Madison Robert McDermott Sohair Abdullah

Superconducting RF Sensors for Particle DM Detection

RF readout, frequency-multiplexed devices

- Common readout electronics/scheme
- Common challenge: noise

 $KIPMDs \rightarrow energy resolution$

 $\text{Qubits} \rightarrow \text{single shot fidelity}$

Kinetic Inductance Phonon-Mediated Detectors

Frequency

🚰 Fermilab

Superconducting Qubits

Typical Cryogenic Setup

First stage amplification: HEMT

- Widely commercially available
- Low noise (T_n ~ 4-10 K)

Reducing amplifier noise temperature \rightarrow improved SNR

Quantum-limited amplifier as first stage amplification

- SQL @ 6 GHz: 150 mK
- Noise scales linearly with T_n

 \rightarrow Direct improvement in KIPMD energy resolution & qubit single shot fidelity (SSF)

Option 1: Josephson Parametric Amplifier

Single resonance feature provides amplification by extracting energy of pump tone

- Pro: commercially available
- Con: narrow gain band: few -- 700 MHz
 - Flux tuning allows user to select frequency of maximal gain
- Con: low saturation power

5

Parameter	Typical Value	Units
Frequency Range	5.0-7.0	GHz
Bandwidth	300	MHz 🎽
Gain	20	dB 🖌
Noise Temperature	295	mK 🕨
Input Power 1dB Compression (P1dB)	-107.5	dBm 🎽
Flux Bias Current Periodicity (1 \oplus_{o})	4	mA
3 Wave Operation Pump Power	-45	dBm
4 Wave Operation Pump Power	-75	dBm

🚰 Fermilab

Typical Performance Characteristics

Untenable solution for large arrays required for computation, particle detection.

Raytheon BBN JPA

Scaling Up: Qubits & KIPMDs

20 x 10⁶ qubits to break RSA-2048 encryption arXiv:1905.09749

6

BULLKID Concept (M. Vignati)

60 resonators/wafer x 20 wafers/stack → 1200 resonators!

Option 2: Traveling Wave Parametric Amplifiers

Signal amplification obtained by injecting a pump tone into a nonlinear transmission medium which modulates the line's inductance per unit length.

- Josephson effect (J-TWPA): Long array of Josephson junctions/SQUIDs (~100s)
- Kinetic inductance effect (KI-TWPA): high KI material transmission line (NbTiN)

Offer wide (GHz) bandwidth, high saturation power, and near quantum-limited noise performance.

J-TWPA developed by MIT-LL, primary source \rightarrow supply more restricted now

Group at Washington University St. Louis developing devices based on MIT-LL design

Need: An avenue for expanding the supply of TWPA to the experimental community

J-TWPA: C. Macklin et al, Science, 2015.

🛟 Fermilab

Kinetic Inductance TWPA

Developed by groups at JPL and NIST

Figures of merit:

- Gain: > 15 dB
- Bandwidth: > 4 GHz
- Saturation power: > -60 dBm
- Operates at SQL

Other KI-TWPA references:

G. Che et al. arXiv:1710.11335 (2017)
S. Shu et al. Phys. Rev. Research 3, 023184 (2021)
M. Malnou et al. PRX Quantum 2, 010302 (2021)
M. Malnou et al. arXiv:2110.08142 (2021)

Fermilab LDRD Proposal

Partnering with Peter Day (JPL) to produce and characterize KI-TWPAs

Our proposal would establish:

- 1. The KI-TWPA as a viable *community* option for broadband, quantum-limited RF amplification
- 2. The pathway from JPL to Fermilab for the supply of these amplifiers
- 3. The infrastructure and expertise at Fermilab to make use of these amplifiers and disseminate them to multiple Fermilab efforts
- Anticipated throughput: 6 devices/year during LDRD
 - More going forward, depending on demand, funds

Fermilab Low-Background Cryogenic Facilities

Located in the MINOS experimental hall at Fermilab, 100 meters underground

Fermilab LDRD Proposal: Technical & Scientific Goals

Instrument the NEXUS & QUIET facilities for KI-TWPA characterization and application

Apply KI-TWPA readout to achieve the following:

- 1. Demonstration of a KIPMD with an eV-scale energy resolution
- 2. A DM search using a low-threshold KIPMD
- 3. Demonstration of near quantum-limited amplification of an array of frequency-multiplexed superconducting qubits

KI-TWPA Application: MKIDs & KIPMDs

Optical MKID device w/ KI-TWPA

Caltech device w/ KI-TWPA

"Ramanathan, Wen, in prep. (Golwala group, Caltech)"

KI-TWPA Application: KIPMDs at FNAL

Current device: $\sigma_E^{abs} = 2.6 \text{ eV}$ with $\eta_{ph} \sim 1\%$

- Previous device: $\eta_{ph} = 8\%$
- Improved RF transmission: 4x improvement in σ_{E}^{abs}

Adding a KI-TWPA: 4-7x improvement in σ_{F}^{abs}

KI-TWPA Readout for KIPMDs enables:(i) the first demonstration of eV-scale resolution(ii) the first DM search with these devices(iii) reaching unexplored parameter space for DM.

	Current	$\eta_{ph} = 10\%$	η_{ph} = 30%	KI-TWPA + η_{ph} = 10%	<i>KI-TWP</i> A+ η _{ph} = 30%
$\sigma_{E}^{\ abs}\left[eV\right]$	2.6	0.65	0.65	0.14	0.14
$\sigma_{\rm E}^{}$ [eV]	320	6.5	2.2	1.4	0.47
E _{thresh} [eV]	1600	32.5	11	7	2.35
ER M ^{min} [MeV]		15	4	3	0.9

η_{ph} ≡ energy absorbed in MKID/energy deposited in substrate

KI-TWPA Application: Qubits

NIST & Raytheon BBN demonstrated KI-TWPA use with superconducting qubits

- ~10x noise reduction across >4 GHz bandwidth
 - 10(6) GHz: 1.4(4.1) photons of added noise at 10 GHz
- Simultaneous readout of 2 qubits with fidelity approaching 90%

L. Ranzani et al. Appl. Phys. Lett. 113, 242602 (2018)

🛠 Fermilab

KI-TWPA Application: Qubits at FNAL

Daniel Bowring's ECA

- MIT-LL J-TWPA
- 4 transmon chip

Demonstrated ~10 dB of gain Clear reduction of noise

🛠 Fermilab

<u>Objective</u>: demonstrate simultaneous readout of 4 qubits with SSF \ge 90%

Setup allows direct comparison of J-TWPA and KI-TWPA with identical chip, transmission line, and readout electronics

Conclusion

- Kinetic Inductance Traveling Wave Parametric Amplifiers offer a promising alternative to JPAs and Josepshon TWPAs.
 - Shown to operate near the SQL of noise across 4 GHz of bandwidth.
- Future arrays of qubits and KIPMDs will require these amplifiers, while other RF experiments will benefit from their availability.
- Seeking LDRD support to outfit Fermilab cryogenic facilities for KI-TWPA characterization and application.
 - Will enable first of its kind low-threshold dark matter search with KIPMDs
- Will establish a pool of KI-TWPAs at FNAL for experimenters, resolving the current challenges due to limited J-TWPA availability.

D. Temples FNAL

D. Bowring FNAL

S. Golwala Caltech

Advertisement: Have a need for cryogenic broadband low-noise RF amplifiers?

Acknowledgement: KI-TWPAs sourced from Peter Day, JPL.

Kinetic Inductance Phonon-Mediated Detectors

Phonon-mediated MKIDs: superconducting microwave LC resonators deposited on a crystalline insulating substrate (e.g., silicon).

We aim to demonstrate these devices as eV-scale microcalorimeters given their sensitivity to athermal phonons produced by particle interactions in the substrate propagating to, and breaking Cooper pairs in, the superconductor.

🛠 Fermilab

Kinetic Inductance Phonon-Mediated Detectors for Dark Matter

Dark matter detection down to fermionic thermal relic mass limit of a few keV requires sensitivity to eV-scale depositions (sub-eV quanta).

MKID-based microcalorimeters:

- **Fast.** 10 µs rise time and O(ms) fall times demonstrated at NEXUS.
 - Directly sense athermal phonons rather than waiting for a thermal distribution to be reached.

🛠 Fermilab

• Scalable. Natively frequency multiplexable: no cryogenic multiplexers, identical warm electronics for a 1 resonator device up to O(10³) resonators.

Currently performance limited by energy resolution

- TES sensors: $\sigma_{\rm F} = 2.7 \text{ eV}$ (SuperCDMS)
- Phonon-mediated MKID sensors: $\sigma_{\rm F} = 26 \text{ eV}$ (BULLKID)

To date, no DM searches yet performed with phonon-mediated MKID devices.

NEXUS: Northwestern EXperimental Underground Site

Key facility features:

- CryoConcept HEXADRY dilution refrigerator
- 107 m rock overburden (300 mwe)
 - Muon flux reduced by ~500x
- Moveable lead shield & B shielding
- @(100) dru background rate (Nal)
- Optical photon & DD neutron calib. systems

Phonon-mediated Kinetic Inductance Detectors for Dark Matter

- **Alternative to TES.** KIDs are faster, highly multiplexable with no extra electronics, and non-dissipative (lower heat load & amenable to QIS techniques)
- State of the art energy resolution (threshold): •
 - (phonon-mediated): $\sigma_{r}=26 \text{ eV}$ (~125) KID eV) [CALDER, Supercond. Sci. Technol. 31, 075002 (2018)] eV)
 - TES: $\sigma_{-}=2.65$ eV (12.5)[SuperCDMS, Phys. Rev. D 104, 032010 (2021)]
- No direct DM search with KID devices performed to date. ۰
- Ultimate KID sensitivity lies between qubits and TES. Provides the ability to study effects of interest for gubits with a better understood detector (stress microfractures, Cherenkov radiation).

Interactions in substrate produce meV-scale athermal phonons that propagate freely until they are absorbed by the superconductor, breaking Cooper pairs ($E_{nh} > 2\Delta \sim \mathcal{O}(100) \ \mu eV$)

21

MKID Warm Electronics and LED Calibration System

Fully remote-controllable system

- Ettus x300 USRP & GPU SDR
 - DAQ stability issues largely resolved
 - Server, client running on same PC
- DAQ PC GPU GeForce RTX 2080 Ti
 - Planned upgrade to RTX 6000 Ada
 - >4x more memory, cores

Optical Calibration System

- 470 nm LED (ThorLabs EP470S04)
- Up to ~5 mW optical power
- Fiber pointing at rear of device
- Pulse burst synced to USRP clock
- Pulse profiles:
 - 1 μs @ 10 Hz / 2 μs @ 5 Hz
 - Limited to 0.001% duty cycle

🛠 Fermilab

Readout & Optical Calibration System

FNAL-I Device (O. Wen) 3.9--4.4 GHz

- Phonon sensitive resonator 30 nm Al inductor (4.24 GHz)
- 10x Nb resonators
- ~1g high-resistivity Si substrate

DAQ: Ettus Research x300 USRP

Correlated noise removal with off-resonant tones

"Fermilab I" Resonance Spectrum

‡Fermilab

24 10/4/23 D. Temples | BREAD Collaboration Meeting | Broadband Parametric Amplifiers for Dark Matter Searches and QIS

