ETROC2 Minor Modifications (at metal layer 2)

Xing Huang Sep. 11, 2023

Outline

- 1) Overview of ETROC2.
- 2) 1st round of minor modifications and its results.
- 3) 2nd round of minor modifications for the rest of the four wafers on hold at TSMC

9/11/23

ETROC2 is a 16x16 pixels readout chip.

	\leftarrow							21	mm							\geq
Ą	255	239	223	207	191	175	159	143	127	111	95	79	63	47	31	15
23 mm	254	238	222	206	190	174	158	142	126	110	94	78	62	46	30	14
	253	237	221	205	189	173	157	141	125	109	93	77	61	45	29	13
	252	236	220	204	188	172	156	140	124	108	92	76	60	44	28	12
	251	235	219	203	187	171	155	139	123	107	91	75	59	43	27	11
	250	234	218	202	186	170	154	138	122	106	90	74	58	42	26	10
	249	233	217	201	185	169	153	137	121	105	89	73	57	41	25	9
	248	232	216	200	184	168	152	136	120	104	88	72	56	40	24	8
	247	231	215	199	183	167	151	135	119	103	87	71	55	39	23	7
	246	230	214	198	182	166	150	134	118	102	86	70	54	38	22	6
	245	229	213	197	181	165	149	133	117	101	85	69	53	37	21	5
	244	228	212	196	180	164	148	132	116	100	84	68	52	36	20	4
	243	227	211	195	179	163	147	131	115	99	83	67	51	35	1,9	3
	242	226	210	194	178	162	146	130	114	98	82	66	50	34	18	2
	241	225	209	193	177	161	145	129	113	97	81	65	49	33	17	1
	240	224	208	192	176	160	144	128	112	96	80	64	48	32	16	7
V		NS	VRE	1 :F			PL									

3

ETROC2 Submission Timeline

- Oct. 2022, ETROC2 formal submission.
- Feb. 2023 May 2023, first round (R1) of minor modifications to mitigate the defects caused by the large 'floating' metal layer 3 before the upper layers are built.
- Jun. 2023 present, second round (R2) of minor modifications for metal layer 2 are ready for submission.

IMEC N65 TMSI07 Skew lot N60R91 Defects Issue [Slide from TSMC]

- **Description :** TMSI07 N60R91 found arcing like defect in M4 CMP stage with defect ratio 1.7~24.5%.
- **Investigation**:
 - Inline check : No abnormal process record & confirmed all neighbor products & lots w/o similar defect issue
 - The defects are layout dependency : All defects are located in V3 region with ultra long M3 line
 - → The root cause is suspected Via etch process charging is difficult to release on ultra long metal lines induced arcing defects
 - Leading lot N60R80 w/o defect scan but might suffered similar issue due to it's layout dependency
- Action :
 - Since layout dependency can't be covered by process tuning → we will still release wafers for shipping and provide defect map for IMEC ink out
 - Need IMEC help to check layout if long M3 have connection to OD and the OD area for charge release during process for further RTO evaluation M3 pattern density

#1

X

XXXX

ХХХ

0

-2

-4

9/11/23

X

XX

-87 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

#4

X X X X X

X

X

SSS

3 2 Х 1 X 0 -1 -2 -3 -4 -5 -6 -87 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 #2

5 4 FFF

Defect map measured by TSMC from the ETROC2 corner lot: 6 wafers, with #1/2/3 in FFF corner and #4/5/6 in SSS corner

Clock tree layout cross section view

- M1 the top are connected. co The clock H tree shielding structure (in M3/M7) is connected to the OD the digital ground at M7 only.
- The relatively large shielding in M3 layer would be floating before M7 is built in the fabrication process.
- The minimum space requirement of the wide metal is 0.16 um. To play safe, we use 0.26 um space between M3 of clock signals and M3 shielding.

- This could potentially accumulate large charge on M3 due to the large shielding structure, large enough to possibly cause damage during the fabrication process.

M1

OD

co

There is no warning on this potential issue by the design tools/rules.

Proposed simple solution

- The proposed solution is connecting the shielding structures to the digital ground by only updating M3 without modifying other sections, even no via added and no chip dummy fill modified.
- All M3 parts should have a connection to OD ground without going through high metals, such during production, the M3 always has a discharge path

Wafer probing results after R1 minor modifications

- The yield of the two released wafer at typical corner is 97% after initial test.
- The 1st round of minor modifications addressed the defect and improved the yield significantly.
 9/11/23

Outline of R2 minor modifications at metal layer 2

- 1) Disconnecting the VREF of TS (Temp Sensor).
- 2) Connecting floating ground net in WS.
- 3) Change the clock selection for Efuse.

The above three are the known minor issues identified during ETROC2 testing so far

Diagram of Vref distribution and layout connection

VREF

Gen

- The VREF generator is in the lower left part of the ETROC2 chip. Connecting to the wide and horizontal metal layer to each column. The connecting point of the wide metal 7 and the Vref input of Temp sensor is on the right side. The cross section of the connecting point is shown on the right side.
- Since the connection using metal layer M7 and M2, and stacked vias. We can cut either metal 7 or metal 2 to disconnect the connection.
- In ETORC3, we can insert a buffer before the resistor series, or share a buffer from one pixel (0, 0) to address this issue.

- There are two power domains in WS schematic, digital power domain (DVDD, DVSS) and analog power domain (AVDD, AVSS). The digital and analog powers will be mapped as VDDWSD and VDDWSA on the test board, respectively.
- Digital part includes the digital circuits and digital power pads. The I2C core and the IOs of device address [4:2] are in the digital part. Analog part includes the analog circuits and analog power pads.
- The powers of lower 2-bit I2C address were connected to DVDD. The powers of SCL/SDA/RSTN were connected to AVDD. All the grounds of these 5 pads are connected to the net of ESD_VSS but did not connect to either ground of DVSS or AVSS. This scenario is confirmed in the schematic and layout of WS.

Possible solutions for WS floating ground

- Left diagram shows to connect the ESD_VSS net to the digital ground (DVSS). This solution can be done from metal layer 3 to 6.
- Right diagram shows to connect the ESD_VSS net to the analog ground (AVSS). This solution can be implemented from metal layer 2 to 6.

Diagram of Efuse in ETROC2

- The Efuse in ETROC2 chip is packaged based on the Efuse in ET2-test chip, the original Efuse is the block shown in ٠ the blue block above.
 - 1. pre-set the clock source as the 40 MHz clock from PLL divided by 5.
 - 2. Adding the bypass operation, if the bypass is enabled the output will be the pre-defined value of Prog[31:0], not the actual value of Efuse.
- In the clock setting, the Clock sel is tied low with the external clock interface. This causes the external clock is ٠ selected as the input clock source which means no clock input to the Efuse controller. 9/11/23

Possible solutions for Efuse clock selection

- Disconnect the connection of Clock_sel to the ground (Low), and connect Clock_sel to digital power (DVDD). The Clock_sel will be fixed as logic high to select the internal clock.
- Disconnect the connection of Clock_sel to the ground (Low), and connect Clock_sel to en_clock. En_clock is controlled by I2C, which means if en_clock is enabled (active high), the input clock is using the internal clock. If en_clock is disabled, the clock mux will select external input (ground) which will save power consumption.
- The modifications can be done on metal layer 2.

Summary

- R1 minor modifications on metal layer 3 only addressed the defect during the fabrication process.
- R2 minor modifications on metal layer 2 only are proposed and implemented. The GDS file is ready for submission.
 - These minor modifications will be applied to the 4 wafers still on hold at TSMC

Backup

Possible solution for EFuse

• Disconnect the connection of Clock_sel to the ground (Low), and connect Clock_sel to digital power (DVDD). The Clock_sel will be fixed as logic high to select the internal clock.

Possible solution for Efuse (implemented)

Disconnect the connection of Clock_sel to the ground (Low), and connect Clock_sel to en_clock. En_clock is controlled by I2C, which means if en_clock is enabled (active high), the input clock is using the internal clock. If en_clock is disabled, the clock mux will select external input (ground) which will save power consumption.

ETROC2_WS_DMY

ETRACO M/S DM/V chip DRC	
	X
File Xiew Eighing in Tools Window Settle Image: Set	пēib
Y Show All ● ETROC2_WS_DMY, 3048 Results (in 9 of 13 Checks)	
Image: Second Condition Results Flat I Z 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Image: Second Condition 1 </td <td>L .</td>	L .
MOM.R.1 (& Poly shielding and underneath NW or PW must bias at same potential for reliability consideration. If poly shielding terminal could not be tied to the underneath NW or PW, customer should keep bias between poly terminal and underneath well within thin gra oxide (Without 002) or thick gate oxide (With 002) maximum applied voltage for reliability consideration. 8 DRC only check following conditions: 8 (1) (MOM PO INTERACT (MOM_OD NOT INSIDE 002)) INTERACT ((MOMDMY(155;10)) NOT (MOMDMY(155;27))) [Poly shielding MOM with dummy 0D underneath] and underneath NW or PW must bias at same potential through metal connection. PO_MOMi = (ILPLi INTERACT (MOM_OD NOT INSIDE 002)) INTERACT ((MOMDMY OR MOMDMY_2T)	x
PW_NOT_POI = PWELIN NOT EO NONE EXT POJONN NW NOT_POI < 0.001 ABUT == 0 NOT CONNECTED REGION EXT PO_MONE PW_NOT_POI < 0.001 ABUT == 0 NOT CONNECTED REGION }	
O Check MOM.R.1 1 21 9/11/23 21	⊅.▼

<u>File ⊻iew Highlight Tools Window Setup</u>

📁 🖋 🔍 🐞 🛛 🐺 🧔 🔶 🛛 Search ♦

Thow All The No Results Found

Thow All ▼ ⊞ No Results Found	
Results	4
	X
	X

9/11/23

_ 🗆 ×

H<u>e</u>lp

Diagram of ETROC2 power distribution

- Considering the locations of the PLL and the globalDigital are in the middle part, the IOs are divided into 3 sections, the left analog IOs, the digital IOs in the middle, the right analog IOs.
- Independent power supplies of pre-amplifier (PA), charge injection (Qinj), discriminator (Disc), clock generator (CLK), serial link (SL), digital part (Digital). Digital part includes readout, I2C, EFuse, etc. Efuse needs a 2.5 V power supply only for the EFuse programming.
- For the analog IOs, extra analog grounds (VSS_IO1, VSS_IO3) are needed for the IOs in each section. VDD_IO2 and VSS_IO2 are provided for the digital IOs.
- In addition, VSS_S is the IO with 3 pads connected to the shielding structure for the analog part in each pixel. An VSS_S1 is a pad employed to connect the AP shielding layer on the top of pixel matrix.

Layout of WS in ETROC2

WS layout

Digital power domain on metal layer 3 Digital power domain Analog power domain Ground for the signals of WS I2C pads (float)

• There are two power domains in WS, digital power domain (DVDD, DVSS) and analog power domain (AVDD, AVSS).